
Knowledge Graph Construction for Academic Paper
and Knowledge Graph Based Paper Review System

Zhongye Wang
Shanghai Jiao Tong University

517030910353

Yichen Xie
Shanghai Jiao Tong University

517030910355

Xinyu Zhan
Shanghai Jiao Tong University

517030910358

Abstract—In this paper, we focus on the extraction of knowl-
edge graph from academic papers in PDF forms, which allow us
to process PDF papers in the form of structured information
with efficiency. We propose a framework combining existing
XML extraction technique and our two-stage knowledge graph
refinement to extract knowledge graph with logical meanings
from PDF papers. It first build a primitive knowledge graph
from XML file extracted from the paper, and then embed the
knowledge graph with structured relation embeddings to obtain
a refined knowledge graph with more logic relations. We then
build a GNN-based review model above the refined knowledge
graph to evaluate the performance of papers, which also fine-tune
the embedding model by introducing human reviews of papers.
The framework is implemented and tested on 3000+ ICCV
papers from the AceMap database and we obtain promising some
experiment results.

Index Terms—Information Extraction, Knowledge Graph Em-
bedding, Paper Review System, Graph Neural Network

I. INTRODUCTION

Recent years have witnessed an explosion of the number of
academic/scientific papers and submissions in many confer-
ences and journals. This phenomenon yields both opportunities
and challenges. On one hand, the exchange of ideas and
knowledge among researchers is facilitated by the boost of
academic papers, and the great number of papers makes
them a perfect dataset for some automatic review models.
On the other hand, it results in difficulty in undertanding
and evaluating these papers. We lack approaches to convert
pure PDF papers and text files into structured data that can be
efficiently understood by machines while preserving most of
the prior logical information from the paper.

Fig. 1: Structure Information of Academic Paper

As shown in Figure 1, academic papers can be represented
in multiple data forms.

• We can treat the entire PDF paper as an image and use
image processing techniques to analyze it. However, we
lose almost all logic information conveyed by texts, and
we can hardly count this form as structured data.

• By converting PDF paper into pure text sequences, we
can process it with common natural language process-
ing techniques to analyze it, like using recurrent neural
networks for text understanding tasks.

• We can also represent the paper as a document tree with
hierarchical structure. This data form further illustrates
the logic structure among different components of the
paper.

• The ultimate data structure to model the paper is the
knowledge graph, where each node represents an entity
in the paper (section titles, section texts, figures, tables,
etc.) and each edge represents the logic relation between
two entities. The knowledge graph reserves logic infor-
mation in the paper to great extent, while machines can
still understand it efficiently.

In this project, we aims at constructing a framework to
extracte a knowledge graph with meaningful entities and
relations from an academic paper. Figure 2 demonstrates the
pipeline of our project, which can be divided into two phases.

• In the first phase, we extract structure information in
XML format from PDF papers and build primitive knowl-
edge graph with only structure relations and reference
relations inside a single paper. (Section III)

• The second phase is a two-stage refinement of the prim-
itive knowledge graph.

– In stage one, we train models to embed entities
into vectors and train embedding vectors to represent
relations. We use a scoring model to determine the
existence of certain relation between two entities.
Different from conventional knowledge graph em-
beddings, we assume a primitive relation is com-
posed of multiple sub-relations with logic meaning
and unsupervisedly train multiple embeddings for
these sub-relations instead of a single embedding
for the relation. With these sub-relations, we derive
a refined knowledge graph with more meaningful
relations than the primitive one. (Section IV-A)

– In stage two, we build upon the refined knowledge
graph a review model, which uses graph neural

network to evaluate the knowledge graph represen-
tation of the paper. The review model itself gives an
efficient way to evaluate the performance of papers
and therefore alleviating the workload of confer-
ences reviewers. The training process of such model
can further fine-tune the embedding model in the
previous stage to derive sub-relations with realistic
meaning by introducing human understandings of the
paper in reviews. (Section IV-B)

• We implement our framework and conduct experiments
to verify it in Section V.

II. RELATED WORK

A. Structure Information Extraction

To handle the increasing volume of global research output,
much attention was paid to the task of automatic document
processing. Some early work [1] focused on the plain-text
analysis, which had difficulty in dealing with camera-ready
publications. It limited their application to more expansive
data sources. As a popular file format, there existed rising
requirement to extract information from PDF files. Notabale
progress was achieved in this task. Djean et.al. [2] developed a
method to convert PDF document to XML format. Since only
words were extracted in their work, lots of other information
such as figures was ignored. Further, Talbert and Wang [3], [4]
took figures into consideration, but their approach could only
recognize the article body as a whole instead of dividing it
further. Some recent work [5], [6] successfully reconstructed
the logical relationship inside the article by tagging different
entities such as title, abstract and paragraph. These privious
art mainly transformed PDF files into XML or HTML format.
Despite the satisfying accuracy, relationship among different
parts couldn’t be modelled clearly. And we resort to knowl-
edge graph to complement this drawback.

B. Knowledge Graph

Knowledge graph [7], [8] visualizes the semantic network
among various stuff. A knowledge graph is composed of a
set of interconnected typed entities and their attributes. Its
construction can be divided into three core techniques: Data
Acquisition, Information Acquisition and Knowledge Fusion.
Previous work has widely applied knowledge graph in many
different fields such as social relationship [9] and commodity
recommendation [10]. However, we find that few previous
reserach tried to utilize it to parse a single article structure
despite its great potential to model the relationship.

In knowledge graph, each link is embedded as a triplet
(h, l, t), where h, t represent the soruce and target entity and l
denotes the relation. Bordes et.al. proposed an approach called
TransE to construct the low dimensional dense vector h, l, t by
making h+ l ≈ t. Based on it, [11]–[13] further improved this
approxiation metric. However, supervision was indispensible
for these work so the relationship must be defined manually by
human., which made it hard to find some inapperent relations.
Conversely, we design a semi-supervised algorithm to generate

the embedding vectors of entities as well as both visible and
invisible relations with little prior definition.

There have been previous work to extract knowledge graph
of author collaboration information based bibliography infor-
mation in papers [14]. However, no one has ever tried to extract
a knowledge graph that represents the organization and logic
inside a paper like us.

C. Paper Review

Surging contribution amount leads to huge burden of re-
viewers, which calls for the assistance of automatic review
models. Previous art mainly concentrated on two different
insights: text based methods and vision based methods. Text-
based models [15] trained a classifier to grade essays based
on keywords or other features inside text, with human scored
papers as training data. These techniques didn’t take into con-
sideration the rich visual information in the paper. Afterwards,
computer vision techniques are introduced to this task. These
work [16], [17] judged papers with their layout and visual
effect. Unluckly, as a significant factor, these previous methods
didn’t attach importance to the logical structure inside an
article. Thus, these approaches were easy to result in some
flashy and superficial work. As a supplement, we also develop
an approach to score papers based on the refined knowledge
graph of papers, which consists of logical connections among
different parts inside a paper.

III. STRUCTURE INFORMATION EXTRACTION

Our project focuses on the refinement and utilization of
structural information inside papers. However, the common
PDF files can only be recognized as images by computers.
As a pre-requisite of our project, we need to reconstruct the
logic structure of articles in PDF form as well as ignore some
unnecessary formatting style, which is shown in Sec. III-A.
Further, we construct a primitive knowledge graph based on
the extracted entities and relations. As described in Sec. III-B,
it reveals the basic structure of articles.

A. PDF to XML Extraction

In this part, we recover the logic structure inside a paper
based on the PDFX model [5]. PDF files are converted to
XML format, where each elements of a paper, like abstract,
title, text, etc., are extracted as separated units.

It carries out a two-stage process in order to address
structure recovery. Firstly, a geometric model is constructed to
determine the spatial organization of texts and figures in the
article. It identifies pages, words and bitmap images inside the
PDF file. Each element is modelled as a separate object with
specific features, including bounding box, textual content and
font information. These features serve as the basis of content
block partition and further classification.

Then, a second stage identifies the semantic type of these
partitioned blocks, and groups them into regions with same
types. Each time it identifies one semantic type across the
whole article according to some specific features. Those
regions composed of words with most frequent font are

Fig. 2: Project Pipeline

identified as body text. Then, the column layout and intended
reading order can be determined with it. Afterwards, other
regions are tagged in a priority manner where the easiest
elements will be identified first.

Fig. 3: Conditional Random Field (CRF) model

An approach [18] based on Conditional Random Field
(CRF) is introduced to label the XML elements. The process
is explained in Fig. 3. Unlike a discrete classifier focuses on
a single object’s own features, a CRF model takes the context
into consideration. In other words, it refers to the neighbors
of this region when labelling.

Given a sequence x of input regions, we define the proba-
bility to label sequence x with sequence y as

P (y|x) = 1

Z(x)
e
∑

i,k λktk(yi−1,yi,x,i)+
∑

i,l µlsl(yi,x,i)

Z(x) =
∑
y

e
∑

i,k λktk(yi−1,yi,x,i)+
∑

i,l µlsl(yi,x,i)
(1)

where t(·) and s(·) are functions relying on the previous region
and current region. λ and µ are corresponding weight. Z(x)
is a normalization coefficient.

The model labels the sequence of regions x with y∗ of
maximal likelihood using Equ. (2).

y∗ = argmin
y

P (y|x) (2)

As a result, each extracted element in the original article
can be assigned a label with maximal overall likelihood.

B. Primitive KG Construction

With the converted XML file, we want to show the relations
inside the paper through a knowledge graph.

The elements in the XML file will serve as entities in the
knowledge graph, with corresponding tags, types, and texts as
fields of the nodes. The logical structure in the XML file is

considered as relations between elements i.e. edges between
nodes.

We define two kinds of relations inside the paper: Struc-
tural Relation and Reference Relation (Tab. I).

TABLE I: Primitive Relations among Entities

Subject Predicate Object

Structural Relation

title parent top-level heading/abstract
top-level heading parent second-level heading/text body

second-level heading parent third-level heading/text body
third-level heading parent text body

i-th heading/paragraph lead (i+ 1)-th heading/paragraph
figure/table/formula caption caption figure/table/formula

Reference Relation

text body refer heading/figure/table/formula

Three structural relations naturally come from the paper
structure.
• The parent relation defines the hierarchical structure of

the paper as a document tree (the title is the parent of a
section).

• The lead relation defines the sequential structure of the
paper (the first section leads the second section).

• The caption defines the relation between text captions
with figures and tables, which is crucial if we want to
consider interactions among texts and figures/tables when
formulating the knowledge graph.

We also take reference relations into consideration. By con-
sidering references among sections, figures, tables, etc., we can
enrich the primitive knowledge graph with interactions among
elements of the paper meant by the author. However, in this
part, we can only distinguish these apperent references while
other semantic references, like ”in the following sections,
...”, remain invisible. The later knowledge graph embedding
model in Sec. IV may achieve this. An example of primitive
knowledge graph is demonstrated in Fig. 5, where each node
represents an enity and each edge reveals a relation.

The primitive knowledge graph presented in this section
have already conveyed more information than any other forms
of structure information of academic papers presented in Sec I
(text sequences and document trees). In later sections, we
further improve the quality of the knowledge graph.

Fig. 4: The Embedding Model

Fig. 5: Primitive Knowledge Graph

IV. TWO-STAGE REFINEMENT OF KNOWLEDGE GRAPH

In the previous section, we manage to parse PDF papers into
XML format files and extract primitive knowledge graph with
simple structure relations and reference relations. However,
there are several problems with the primitive knowledge graph.
• The knowledge graph may be incomplete where we

have missing relations between two entities. The afore-
mentioned implicit reference in Section III-B is an exam-
ple of such cases.

• The relation types we have are too naive. They only allow
us to recover the paper structure but ignore the logic
relation that links different components of a paper. For
example, we know section 1 leads section 2, but we do
not know whether section 2 is in parallel with section 1
or further explains concepts in section 1.

To overcome these problems, we use embedding method to
refine the relations in primitive knowledge graph. We assume
a primitive relation in the primitive knowledge graph is com-
posed of several sub-relations, and we use embeddings for

these sub-relations to define the one for the original relation
in Section IV-A.

Primitive KG vs. Refined KG. The primitive knowledge
graph contains only four types of primitive relations (structure
relations and reference relations), which do not identify poten-
tial logic relations among entities; the refined knowledge graph
has various types of relations, which are possible relations that
underlies primitive relations. For example, we know entities
a and b have relation r in the primitive knowledge graph,
and r is composed of sub-relations r1 and r2, then the refined
knowledge graph tells us whether a and b have relation r1 and
r2. In short, the adjacency matrix for the refined knowledge
has more channel numbers (more types of edges) than the
primitive knowledge graph.

The reason we have extracted primitive knowledge graph
first is that we do not have labeled data for relations in
refined knowledge graph. What we can get from the PDF
paper without additional annotations for logic organization
of the paper are only four primitive relations. Therefore, the
learning of the refined knowledge graph using embedding
model in the first stage is an unsupervised process and the
embeddings for sub-relations may lack realistic meaning. To
tackle this problem, we use a second stage to fine-tuning the
embedding model by introducing human understandings of
the paper, the review, and train a review model to analyze
the performance of the paper based on the refined knowledge
graph in Section IV-B.

A. Stage 1: KG Embedding with Structured Relation Embed-
dings

Figure 4 demonstrates the entire process of our knowledge
graph embedding method, and we will explain it part by part.

Entity Embedding. The lower part of Figure 4 shows the
embedding process of entities in primitive knowledge graph.

We embed different types of entities into numerical vectors
using different models. For texts, we can use pre-trained
recurrent neural network as the embedding model; for figures,
we can use encoders implemented with convolutional neural
network. However, it is not yet clear how to handle entities
such as tables and bibliographies. Tables are texts structured
in a more visual fashion, which cannot be handled properly as
either images or text sequences. Bibliographies contain many
information about referred papers and their authors, which
cannot be efficiently encoded either.

In our implementation of the framework, we only consider
text elements (titles, headings, body texts) for simplicity. And
to save development time, we use weighted-average word
vectors to encode paragraphs, rather than training an RNN
model from scratch1.

For a paragraph x with a sequence of words [x1, x2, x3, · · ·],
we calculate the its encoding by averaging over word vectors
(existing model) weighted by the TF-IDF values of each word.

~v(x) =

∑
xi∈x TF-IDF(xi)~v(xi)∑

xi∈x TF-IDF(xi)

In this way, we have an efficient encoding of the paragraph
while capturing most of its core ideas.

We embed entities into vectors for two reasons.
• In this way, we can have a more consistent representation

of various types of entities in a paper, which is beneficial
if we want to implement applications above the refined
knowledge graph.

• The embedding of entities is necessary if we want to per-
form relation embedding and therefore achieve relation
prediction.

Relation Embedding. Relation embedding aims at represent
different relations in numerical form, and using the embed-
dings for one relation r and two entities a and b, we should
be able to determine whether relation r exists between a and
b using a scoring function. This is the most important step
in knowledge graph embedding, which defines the concept of
”graph” given a set of entities.

The upper part of Figure 4 includes the scoring function
and the embedding vectors of relations, which composes of
the embedding model for the relation. We can train the scoring
function and embeddings with the conventional triplet loss and
by randomly sampling a batch of positive edges (relations that
do exist) and negative edges (relations that do not exist) in each
optimization step.

The model needs to have ability to distinguish whether a
paricular relation exists between two entities, i.e. whether a
directional edge exists between two nodes. To accomplish this,
within each iteration a batch of positive edges are sampled with
label 1, as well as a batch of negative edges with label 0. The
loss for optimizing this multi-label problem can be formulized
as follows:

Lcls = CrossEntropy
(
S(ei, ej , rk), agt

)
1We haven’t found any pre-trained model that can fit into the paragraph

encoding task in our framework.

where S denotes our model for relation inferencing; ei, ej are
entity embeddings for entity i and j respectively; rk is the
relation embedding for (sub)relation k, which is a optimizable
parameter; agt denotes the ground-truth label, i.e. whether the
triplet (i, j, k) exists in original knowledge graph G.

In the subrelation learning settings (described in following
paragraphs) where each opserved relation is decoupled into a
number of subrelations and embeddings of them are learned
separately, only optimizing the Lcls without any constraint
on relation embedding R = [rk], k ∈ K will lead into de-
generating cases. The phenomenon is all subrelations inhering
from common parent relation will have the same embedding.
This diverts from our original intention of discovering latent
relations in knowledge graph, for in semantic sense if two
relations share the same embedding, they could be regarded
as one relation. Inspired by triplet loss, we introduce a new
loss to ”push” this embeddings away from each other. Within
each optimization step, a pair of relations k1, k2 sharing the
same parent relation will be sampled, and a loss, embed loss
as we called, is introduced to let the distance between them
as large as possible.

L(rk1 , rk2) = −‖rk1 − rk2‖22

where
Parent(k1) = Parent(k2)

Then the loss on all relation embedding can be formulized
as follows:

Lembed = E
ki,kj

[
− 1(Parent(k1)=Parent(k2))‖rk1 − rk2‖

2
2

]
The total loss used in relation embedding thus will be:

L = Lcls + α · Lembed

where α is the balancing factor between two part of loss.
Different from traditional knowledge graph embedding, we

assume a relation may be composed of different sub-relations,
and instead of directly computing the embedding vector for
each relation, we find the embedding vectors for their sub-
relations. In this way, the embedding of a relation is a structure
consisting of multiple sub-relation embeddings. Under such
assumption, the score of the original relation is determined by
scores of the sub-relations.

Fig. 6: (Sub-)Relation Embeddings

We introduce a set of functions with permutation symmetry
to aggregate the scores of sub-relations and assign the result
to the parent relation, as shown in Figure 6. These sub-
relation score aggregation functions, denote in symbol A(R),
are defined as:

A(R) = Aggregate
(
S(i, j, rk1),S(i, j, rk2), . . . ,S(i, j, rk|K|)

)
where Aggregate(·) is the main part that actually functions.
The aggregate functions Aggregate as component of subre-

lation score aggregation functions, should have the following
property:

Aggregate(S) = Aggregate(PS)

where S is a vector/matrix and P is any permutation matrix
having appropriate dimension.

Here we consider 3 simple forms of aggregation functions
Aggregate(·):
• Maximum: simply taking the element with largest value

Aggregate(s1, . . . , sn) = max(s1, . . . , sn)

• Sum: taking the sum of the elements:

Aggregate(s1, . . . , sn) =

n∑
i=1

si

• Adjusted Sum: still taking the sum, but each value is
adjusted by a weight pi. Here we tested using softmax to
produce the weights of average function

Aggregate(s1, . . . , sn)

=

n∑
i=1

pisi

=

n∑
i=1

Softmax(si; s1, . . . , sn)si

=

n∑
i=1

esi
n∑
j=1

esj
si

With the scoring method, we can do inference for how
likely a (sub-)relation exists between two entities by applying
a sigmoid function to the score as (3) shows. This yields the
low-channel adjacency matrix on the left and the high-channel
adjacency matrix on the right in Figure 4.

Pr(r(a, b)) = σ(S(r(a, b)))

Pr(ri(a, b)) = σ(S(ri(a, b)))
(3)

With the methods described above, we could obtain
(sub)relation embeddings R and refined knowledge graph
constructed based on R. However, the learning process of re-
lation embeddings is unsupervised, i.e. no more information is
introduced and utilized during the relation embedding process.
This may lead to uniterpretable (sub)relation embeddings. It
will be drawback in subrelation discovery, as we want the
subrelations should have some semantic meanings.

Therefore we need a framework to introduce more informa-
tion to finetune the relation embedding model, so that it can not
only distinguish the presence triplet (i, j, k), but also generates
relation embedding rk for (sub)relation k with more semantic
information. As a result, we could get a new refined knowledge
graph Ĝ which better corresponds to human knowledge. This
is purpose of the second stage of refinement.

B. Stage 2: Fine Tune Embeddings with Review Model

As reasoned in the previous section, we need to introduce
extra information that can reflect human understanding of the
paper to equip refined knowledge graphs with more semantic
meanings. An ideal type of such information is human reviews
of the paper, which not only carry human understandings but
also evaluate the performance of papers. Examples of human
reviews are acceptance scores of judges, judges’ comments,
or simply citation count of the paper.

We propose a review regression framework as shown in
Figure 7 to train an additional review model while finetuning
the embedding model. This regression task not only assign
semantic meaning in reviews to the refined knowledge graph,
but also builds an application above it, which automatically
evaluates the paper.

In this framework, we need a dataset of PDF papers and
their reviews. We first extract primitive knowledge graphs
from PDF papers. We sample a batch of them and embed
them into refined knowledge graphs. We then use a GNN-
based review model to process the refined knowledge graph
and obtain a review of it, which is compared to the ground
truth review to get regression error. Therefore, we can back-
propagate this error throughout the GNN review model and
eventually to the adjacency matrix and node embeddings of
the refined knowledge, which can be further passed to the
embedding model to finetune it.

Fig. 8: Structure of Review Model

As for this project, we choose to use the annually average
reference counts for the paper. These data are easily accessible
from AceMap database, and we believe they have latent
relationship with the structure of the refined knowledge graph
Ĝ. To predict the value and minimizes the error might have
positive effect on the process of refining knowledge graph G.

Figure 8 shows the structure of the GNN we use as the
review model. The relational graph conventional network

Fig. 7: The Review System and Training Scheme

(RGCN) [19] is a variation of GCN layer, which can handle
multi-graphs like knowledge graphs. However, to allow gradi-
ent being propagated to the adjacency matrix, we need to use
the dense graph version of GCNs, which takes entire adjacency
matrix as inputs instead of edge lists. We use three layer
skip-connections to compute the global graph representation,
which is processed by another multi-level perceptron to get
the predicted review.

This concludes our framework of knowledge graph refine-
ment, which distinguishes sub-relations underlying primitive
relations and use review information to finetune those sub-
relations and builds a paper review application over the refined
knowledge graph. In the next part, we will demonstrate our
implementation through sets of experiments.

V. EXPERIMENTS

A. Stage 1: Embedding Model

We execute a number of experiments to evaluate the pro-
posed embedding models and study the effects of its building
components. We survey different factorization methods and a
number of score aggregation functions and evaluate them on
a custom-made dataset to prove their effectiveness. Here we
will present the settings and results of experiments we have
done on embedding models.

a) Experiment Setup:
Dataset. The training dataset contains 2857 knowledge

graphs extracted from ICCV papers using the techniques
introduced in Section III-B. It contains 247428 entities and
385776 edges in total. The test dataset contrains 500 knowl-
edge graphs, 42511 entities and 68441 edges.

Training. Within each optimization step, we sample a batch
of positive triplets as well as a batch of negative triplets, along
with their ground truth labels. Besides, in subrelation embed-
ding, two subrelations sharing the same parent relation are
sampled and the negative value of their distance is penalized.

Metric. Since it is impractical to directly evaluate the
quality of relation embeddings, we evaluate relation embed-
ding together with relation inference model. We evaluate the
accuracy and recall for each triplet (i, j, k) consists of two
entities i, j, and one relation k from former to latter. We
also draw PR curve and ROC, and AUC is computed for
each experiment. Here we weight more on the recall score
because we assume many relationships doesn’t show up in
training data, and as a result instead of using F-scores, we
evaluate accuracy and recall respectively, not taking precision
into account.

b) Experiment Evaluation: Here we present the experi-
ment results for different model architectures.

TABLE II: Evaluation results for different model architectures.

Model Accuracy Recall AUC

trans-E + max 0.3752 0.0005 0.3752
trans-E + sum 0.5006 0.0011 0.5006

trans-E + adjusted sum 0.5000 0.0000 0.5000

mlp + max 0.9429 0.9704 0.9803
mlp + sum 0.9441 0.9748 0.9814

mlp + adjusted sum 0.9459 0.9630 0.9817

We test 2 different factorization models: explicit trans-E
model and implicit MLP model. We also test 3 different score
aggregation methods: max, sum, adjusted sum. The evaluation
results shows our method can achieve 0.9748 recall with MLP
and sum structure. The PR Curve is shown in figure 9. The
ROC for each experiment is shown in fig 10.

The experiment results shows the implicit MLP model
performs better than the explicit Trans-E model. While Trans-
E model tries to disentangle entities and relationships and
embed them to single space independently, it turns out to be
far less competent than MLP which implicitly captures the
joint information about the entity-relation triplet.

(a) trans-E + max (b) mlp + max

(c) trans-E + sum (d) mlp + sum

(e) trans-E + adjusted sum (f) mlp + adjusted sum

Fig. 9: Evaluation result: PR curves

It also turns out that among three different scroe aggregation
functions we have tested, the adjusted sum aggregation has
the best accuracy and AUC value, while the simple sum
aggregation has the best recall. It can be concluded that if
we want the subrelations stick closer to original relations in
primitive knowledge graph, adjusted sum aggregation should
be adopted; on the other hand, if we want more latent subre-
lation been captured, the simple sum aggregation is prefered.

Figure 11 shows the distributions of subrelations. It can be
seen that different surelations are learned for each relation.
This indicates the model can capture subrelations and the
degeneration case doesn’t happen.

B. Stage 2: Review Model

a) Experiment Setup:
Dataset. In this part of the experiment we use the same

data as the experiment in stage 1, though the format is altered.
Instead of feeding triplets into the model, we feed all entities
within one graph along with the supervision information. Here
the supervision information in this experiment is the annually
average reference count of each paper.

Training. During the training process, within each step,
we first predict the refined knowledge graph with the learned
relation embedding and relation inference model we obtained
in stage 1 experiment. Afterwards we adopt a series of dense

(a) trans-E + max (b) mlp + max

(c) trans-E + sum (d) mlp + sum

(e) trans-E + adjusted sum (f) mlp + adjusted sum

Fig. 10: Evaluation result: ROC

Fig. 11: Subrelations count for each relation

graph convolutional layers to generate prediction. The criterion
corresponding to supervision information is applied to jointly
optimize relation embedding and relation inference model in
stage 1, and the newly introduced prediction model. Here we
use MSE-Loss to optimize the whole network.

Note that the framework we proposed here is extensible and

primitive knowledge graph knowledge graph (stage 1) knowledge graph (stage 2)

primitive knowledge graph knowledge graph (stage 1)
knowledge graph (stage 2)

Fig. 12: Visualization Samples: Different linestyles show different sub-relations

compatible with more fine-grained supervision information,
not only for regressing one number. To introduce new super-
vision information, just to modify the prediction model and
select the appropriate criterion, and follow the train process
mentioned above.

Metric. Since we are trying to regress a number here, the
choice of metric is very limited. Here we use Mean Absolute
Error as metric, showing the amount the prediction differs
from the ground truth values.

b) Experiment Evaluation:
Here we present the experiment results for finetuned models

in stage 2 experiments. The results shows our framework
achieve best MAE with structure DenseGCNConv and it can
capture the distributions of supervision information.

TABLE III: Evaluation results for Stage 2 experiment.

Model Mean Absolute Error

RelEmbed + RelModel + DenseGCNConv 5.81
RelEmbed + RelModel + DenseGraphConv 5.94
RelEmbed + RelModel + DenseSAGEConv 7.71

However, we have not discovered it until we start training
the model that the the graph convention layers in the library
we use does not support back-propagating gradient to the
adjacency matrix, which in turn cause the embedding model
in the previous stage cannot be fine-tuned. But this problem
can be resolved by implementing our own GCN layers that
support such operation. As a result, we can only build the
review model above the fixed embedding model, and the fine-
tuning of the embedding model will be our future work.

Visualization Samples. In this part we present a few results
generated with the refined embeddings obtained in stage 2.
Each sample contains 3 figures, the primitive knowledge
graph, knowledge graph obtained in stage 1 and knowledge
graph in stage 2. The figures are presented in figure 12.

VI. CONCLUSION

In this paper, we have proposed a framework for the extrac-
tion of knowledge graph from academic papers in PDF forms.
It first convert PDF papers into XML formats and extract
primitive knowledge graphs with only structure relations and
reference relations from them. Then we embed entities and

relations of knowledge graphs into vectors. Different from
conventional knowledge graph embedding work, we decom-
pose a relation into multiple sub-relations and embed those
sub-relations instead, which can be aggregated back to the
original relation again. After the embedding, we get a refined
knowledge graph, which not only identify missing relations
with high accuracy, but also have more logical structure than
the primitive one.

We further build a review model based on GNN above the
refined knowledge graph which predicts the annually averaged
reference count of the paper. Due to limited time, we cannot
further improve the network structure to get better results.
Also, although the training of the review model can fine-tune
the embedding model to assign more logical meaning to it,
we do not have time to modify the library to support gradient
back-propagation through the adjacency graph. However, this
are promising future work that we will look into.

REFERENCES

[1] I. G. Councill, C. L. Giles, and M. Y. Kan, “Parscit: an open-source
crf reference string parsing package,” in International Conference on
Language Resources and Evaluation, 2008.

[2] H. Djean and J. L. Meunier, “A system for converting pdf documents
into structured xml format,” in International Conference on Document
Analysis Systems, 2006.

[3] M. Talbert, “Mobipocket.com pdf2xml,” [EB/OL], https://launchpad.net/
pdf2xml.

[4] L. Wang, “The pdf2htmlex project,” [EB/OL], http://coolwanglu.github.
io/pdf2htmlEX/.

[5] A. Constantin, S. Pettifer, and A. Voronkov, “Pdfx: fully-automated pdf-
to-xml conversion of scientific literature,” in Proceedings of the 2013
ACM symposium on Document engineering, 2013, pp. 177–180.

[6] M. Ley, “Dblp - some lessons learned,” PVLDB, vol. 2, pp. 1493–1500,
08 2009.

[7] S. A., “Official google blog: Introducing the knowledge graph: things,
not strings.” Official Google Blog, pp. 1–8, 2012.

[8] M. R. Quillian, “Semantic networks,” Approaches to Knowledge Repre-
sentation Research Studies, vol. 23, no. 92, pp. 1–50, 1968.

[9] Z. Wang, T. Chen, J. Ren, W. Yu, H. Cheng, and L. Lin, “Deep reasoning
with knowledge graph for social relationship understanding,” 2018.

[10] Z. Sun, J. Yang, J. Zhang, A. Bozzon, L.-K. Huang, and C. Xu,
“Recurrent knowledge graph embedding for effective recommendation,”
09 2018, pp. 297–305.

[11] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding
by translating on hyperplanes,” in Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, ser. AAAI14. AAAI Press,
2014, p. 11121119.

[12] G. Ji, S. He, L. Xu, L. Kang, and J. Zhao, “Knowledge graph embedding
via dynamic mapping matrix,” in Meeting of the Association for Com-
putational Linguistics and International Joint Conference on Natural
Language Processing, 2015.

[13] H. Xiao, M. Huang, Y. Hao, and X. Zhu, “Transa: An adaptive approach
for knowledge graph embedding,” Computer Science, 2015.

[14] Z. Ye, J. Yuting, F. Luoyi, and W. Xinbing, “Acemap academic map
and acekg academic knowledge graph for academic data visualization,”
Journal of Shanghai Jiaotong University, 2018.

[15] L. Larkey, “Automatic essay grading using text categorization tech-
niques,” SIGIR Forum (ACM Special Interest Group on Information
Retrieval), 06 1998.

[16] C. V. Bearnensquash, “Paper gestalt,” in Secret Proceedings of Computer
Vision and Pattern Recognition, 2010.

[17] J.-B. Huang, “Deep paper gestalt,” 2018.
[18] A. Mccallum, “Efficiently inducing features of conditional random

fields,” UAI-03, 10 2012.
[19] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. vanden Berg, and M. Welling,

“Modeling relational data with graph convolutional networks,” in Euro-
pean Semantic Web Conference, 2018.

https://launchpad.net/pdf2xml
https://launchpad.net/pdf2xml
http://coolwanglu.github.io/pdf2htmlEX/
http://coolwanglu.github.io/pdf2htmlEX/

	Introduction
	Related Work
	Structure Information Extraction
	Knowledge Graph
	Paper Review

	Structure Information Extraction
	PDF to XML Extraction
	Primitive KG Construction

	Two-Stage Refinement of Knowledge Graph
	Stage 1: KG Embedding with Structured Relation Embeddings
	Stage 2: Fine Tune Embeddings with Review Model

	Experiments
	Stage 1: Embedding Model
	Stage 2: Review Model

	Conclusion
	References

