
D E T E C T I O N O N R U M O R
P R O PA G A T I O N A N D L A T E N T

E V O L U T I O N
RUMOR DETECTION USING RNN AND VISUALIZATION MODEL OF RUMOR PROPAGATION

AND EVOLUTION

Wang Yilin 517030910327

Wednesday 17th June, 2020

Abstract

Weibo is becoming an ideal social platform for
rumor to spread because of the diversity of
information, freedom of speech and explosive
propagation speed of a microblog.

Therefore, an effective detection mechanism
is indispensable. Instead of relies on platforms
to refute rumors, which is usually with a de-
lay, a better option is to design a algorithm
to detect if a spreading microblog contains a
rumor text.

In this paper, I put forward a model to de-
tect rumor based on the propagation structure
of a rumor, and further, put forward a mecha-
nism to detect if a rumor evolved and becomes
more confusing than the source.

1 Introduction

Rumor is always a problem in social network,
because of the diversity of information in so-
cial platform like Weibo or twitter, rumors
are becoming more and more rampant and
it is more difficult for people to distinguish
between a rumor and a normal news. This
shows more significant during the COVID-19,
even The People’s Daily might also publish
unconfirmed information, and thus causing
many people rush to the pharmacy to buy
Shuanghuanglian to resist COVID-19.

It is already confirmed that, it is impossible

to judge if a microblog is a rumor or not, both
for human and machines. That is because,
a rumor always has the same grammatical
structure as a news, and human can not judge
if this is real or not. As for a machine, some
machine learning methods also do no helps
when only given the text. For example, as is
shown in Figure 1.

Figure 1: Impossible to detect rumor based on text

The first text is a classical rumor that wildly
spread in Qzone ten years ago, and the second
text is a sweepstakes information in Weibo,
and these two texts is almost the same, and
most machine learning models like LSTM can
hardly capture the latent meaning difference
in a bulk of texts. In fact, studies show that
it is almost impossible to detect a rumor only
based on text information.

In most studies, features are extracted from
the structure o f how a rumor propagated and
all texts published by many other users related
to the source. In this paper, I also chose to

1



detect a rumor based on the latent information
during the rumor propagating, collecting all
users’ forwarding text to do this work.

However, in most cases, rumor doesn’t be-
come a rumor the moment the source was
published. For example, some one might pub-
lished a microblog reporting a campus bully-
ing, but some malicious marketing account
might add highly coloured details, trying to
mislead other users, and confirm them that
some thing more than a campus bullying is
happening, and thus a rumor is generated.

Such phenomenons shows that during a ru-
mor’s propagation, evolution might happen,
making a truth lose the original meaning and
becomes a rumor, or making a rumor more
confusing than original.

In rumor evolution, the evolved text might
be almost the same as the original text, but
the meaning already changed significantly. To
detect if evolution is happening during a text’s
propagation is difficult, because on the one
hand, the evolved text is similar in the form,
on the other hand, the detecting model should
be able to know if a similar text has different
meaning. Such a problem is similar to detect
a rumor only based on text information, but
given a target text to be compared.

In this paper, I put forward two distance
metrics to detect evolution for a rumor. The
core idea is to find texts that show up during
propagation that close to the source in form,
but far away in meaning.

2 Related work

Rumor detection is already well studied by
now, there are many ideas to implement ru-
mor detection.

Sejeong Kwon put forward a method to de-
tect a rumor over varying time windows in
2017 [1], which take advantage of structural
and temporal features, and also the linguistic
features of users’ comments during the prop-
agation of a rumor.Tetsuro Takahashi also ex-
tracted features of a rumor and to judge if a
twitter is a rumor [2].

Besides extracting features from structure

and comments, much more implicit features
can be used like popularity orientation, inter-
nal and external consistency, sentiment polar-
ity and opinion of comments, social influence,
opinion retweet influence, and match degree
of messages [3]. And also, some work take ad-
vantaged of the rumor-denying information
from official platform to extract features to
train a classifier [4].

However, because the complexity of ru-
mor detection and the limitation of human’s
knowledge, a better idea is to extract features
automatically, therefore, deep learning is pre-
ferred now.

Jing Ma put forward a method using re-
current neural networks to detect a rumor in
2016 [5], which automatically extract features
from text of comments during the propaga-
tion, and take structure of propagation as a
time series, therefore, the while rumor struc-
ture can be fed into a RNN model. Further,
Ma put forward a novel RNN model, which
changed a time series into a tree structure,
which maintained more information during
propagation [6]. This paper drew many ideas
from these two papers.

More machine idea tricks is used in rumor
detection, for example, attention mechanism
is used in RNN model to detect rumors [7]. Be-
sides, multimodal features is combined with
an RNN model with attention mechanism [8].

3 Rumor Detection

In this part, I put forward two RNN models
to detect rumors.

3.1 Structure of a Rumor

As mentioned above, to detect a rumor, I must
proceed to extract features from the structure
of rumors, here shows the structure in Figure
2.

As is shown, when a rumor is published
as a source, other uses will forwarding this
rumor, and that is how a rumor spreads.

Each forwarding has a time stamp, and
therefore all forwarding texts can be sorted

2



Figure 2: Structure of a Rumor

in a time series. Such a time series is perfect
for applying RNN to do detection.

As can be seen, in this time series, there
are texts expressing suspicious to the source
like T = 1. Also, some forwarding might
in turns confirm the source information like
T = 5, which makes this rumor more con-
fusing for normal users. Besides, some for-
warding texts provides no meaningful infor-
mation like T = 2 and T = 4. However,
there might be some malicious forwarding
texts like T = 3, which denied the source text,
but then changed the meaning of the source
and published another rumor. Normal users
who read this ”correction” might more likely
to trust T = 3 and spread this information
more wildly than the source. Thus, T = 3
text is more like a rumor than the source, and
which enhanced the propagation of a rumor.

All texts in a time series can be considered
as a voting process, a user will express his
own opinion on the source text, and judge if
the source is a rumor. However, normal users
can hardly judge is a text is a source because
the perplexity of a rumor. In most cases, a
user only shows a emotional tendency. A text
forwarded at T = n would express emotional
tendency based on text at T = n− 1, or ideally,
all texts from T = 0 to T = n− 1. Such emo-
tional tendency will enhance or weaken the
emotional tendency of the past texts. For ex-
ample, when a user confirmed a former user’s
query, then the whole time series will become
more rumor-like, and more people would ig-
nore the query and believe the new text. When
a user express suspicious or confused, or deny-
ing, or even confirming, a rumor’s feature is

getting more clear, and makes a rumor more
rumor. Therefore, information contained in all
texts in the time series can be used to judge if
a text is a rumor.

3.2 Recurrent neural network

A recurrent neural network (RNN) is a class of
neural networks where connections between
nodes form a directed graph along a temporal
sequence. Therefore, RNN can exhibit tem-
poral dynamic behavior. When a new input
comes, RNN can update its hidden state by
former hidden state and the new input. This
makes RNN applicable to variable length se-
quences of inputs like speech recognition and
semantic recognition.

A classical RNN is like this: given input
(x1, x2, x3, ..., xT), RNN model would update
the hidden state as (h1, h2, h3, ..., hT), and also
generate a output series (o1, o2, o3, ..., oT).

There are three weight matrix in RNN as
U, W, V. And here is how RNN update hid-
den state and generate output:

ht = tanh (Uxt + Wht−1 + b)
ot = Vht + c

However, the problem is that RNN might be
faced with vanishing or exploding gradients, a
classical RNN model can not capture the long-
distance temporal dependencies using gradi-
ent based optimizing method, in other word,
classical RNN is short-sighted. Therefore,
some improved unit is put forward, which is
called Long Short-Term Memory(LSTM), and
a simplified cersion named as Gated Recur-
rent Unit(GRU). By adding such units into a
RNN model, a model can learn much more
information in a long-distance.

Different from classical RNN, LSTM main-
tains another cell named as memory cell c.

3



Here is how it updates.

it = σ (xtWi + ht−1Ui + ct−1Vi)

ft = σ
(

xtW f + ht−1U f + ct−1Vf

)
c̃t = tanh (xtWc + ht−1Uc)

ct = ftct−1 + it c̃t

ot = σ (xtWo + ht−1Uo + ctVo)

ht = ot tanh (ct)

Here, σ is a sigmoid function, and ft is
defined as a forget gate, which determines
how many information to be dropout, it is de-
fined as the input gate, which determines how
many new memory to be input into the mem-
ory cell. Then, the memory update itself by
combining some past memory and new mem-
ory as ct. Besides, output and hidden state is
also updated.

Before introducing the model used in this
job, I will clarify some details in my job.

Since all texts in a time series are sorted by
time stamp, then they are perfectly fit to LSTM,
however, time stamps can be sorted by order
or reverse order. I name sort by order as top-
down method, and reverse order as bottom-
up method. In this job, I chose the bottom-up
method. In this way, x0 is the text publish
latest, and the xT is the source text. The reason
that I chose bottom-up method is that, texts
published earlier in the time series always has
greater influence the the later, which indicates
that many texts later is forwarded from the
same text.

As can be seen in Figure 3, T = 2, T =
3, T = 5 are all forwarded from T = 1, there-
fore, when T = 1 is input, the memory cell
and hidden state can update according to the
input’s semantic and former inputs’ semantic.
However, top-down method is also qualified
in doing this job, but to keep consistent to the
later job, I still chose bottom-up method.

3.3 Tree-GRU

As mentioned above, a text is be forwarded
from a former microblog. In 3.2, I naively
sorted all microblogs’ text by time stamp.

Figure 3: Bottom-up method

However, though this works in my experi-
ment, but it is does not consistent with com-
mon sense: a micorblog’s semantic informa-
tion is most likely to corresponding to the
microblog it forwarded from. For example,
the user published microblog T = n is for-
warded from T = m, but this user might
never read microblog T = n − 1, therefore,
when updating hidden state and memory cell
when inputting T = m, the model should only
update based on T = n but not T = n − 1.
That means a model should know which mi-
croblogs are forwarded form the input mi-
croblog, and those not forwarded from input
microblog should do no change to the hidden
state and memory cell.

Therefore, the time series should be
changed into a tree structure, with each node
representing a microblog published in the
propagation tree. If node A is the parent of
node B, that means B is forwarded from A.
For example, here shows a rumor tree in Fig-
ure 4.

Figure 4: Tree of a Rumor

Such a tree structure can not be fed into a

4



RNN model, therefore, a novel model is ned-
ded.

In this part, I used a variant GRU model,
which is named as tree-GRU. Different form
classical GRU that fed with a time series, a
tree-GRU sort all nodes by layers, and fed one
layer at each time step, when updating, tree-
GRU would check the parent-child relation-
ship, and only update the state by input nodes’
children.

Tree-GRU also applied bottom-up method.
In the first step, tree-GRU would only get
all leaf nodes in the deepest layer, and then
update all states. Then in the second step,
tree-GRU would get all nodes in the second
deepest layer, and update corresponding the
parent-child relationship. Here shows the dif-
ference in the formula.

Figure 5: Bottom-Up Tree Model

hi = hi1 + hi2
rj = σ

(
wrxj + Urhi

)
zj = σ

(
wzxj + Uzhi

)
h̃j = tanh

(
whxj + Uh

(
hi ∗ rj

))
hj =

(
1− zj

)
∗ hi + zj ∗ h̃j

As can be seen, the only difference between
original GRU and tree-GRU is how hidden
state h is updated.

4 Detection of evolution

In this part, I put forward a mechanism to
detect if some nodes in a propagation tree
evolved. On this basis, I put forward a Vi-
sualization model of rumor propagation and
evolution.

4.1 Definition

In today’s social network, a rumor might
changes while spreading, and becomes more

confusing and hard to discern. And because
different rumor has different shapes of prop-
agation tree, the root might not be the most
confusing and widespread. A evolved rumor
indicates such a case. It is necessary to detect
if a rumor(or a true news)

To clarify what a evolved rumor should
be like, here shows the requirements for a
evolved rumor:

• A evolved rumor should be the root of a
sub-tree of the whole propagation tree of
the source node.

• The sub-tree should be detected as a ru-
mor.

• Evolved text should be similar with the
source text in formal

• Evolved text should be much different
from the source text in meaning.

Here is an example:

Figure 6: An example of rumor evolution

The first text is the rumor source text, which
is a lie without foundation, which is less con-
vincing for normal users. However, the sec-
ond text changed the original text as said by a
medical expert, making the rumor more con-
fusing for people. However, in most cases,
texts in a propagation tree is usually like the
third one, though related to the original text,
but no change from the source. Besides, there
are texts with no meaning in the propagation
tree.

This indicates two problems: First, to detect
evolution, a model should be able to check if
a suspicious text has similar meaning to the
source, because those texts with no meaning
are not evolved. Second, a model should be
able to detect if the meaning of a related text
has changed from the source.

5



4.2 Distance metric

Because that this part of job is a unsupervised
job, so the basic idea is to detect evolution
based on distance.

Here defines distance D as the semantic dis-
tance to measure the similarity between two
texts in semantic. Semantic analysis is a clas-
sical problem in natural language processing,
and many tools can be used to measure the
similarity in semantic. In this part, I chose
LSTM to learn the distance D, which returns a
float from zero to one, indicating how similar
two texts is in semantic.

However, it is not enough to detect evolu-
tion only based on D. For example, some
users might directly copy the text from the
source and re-publish it. In this case, D = 1,
but no evolution has happened.

Therefore, another distance metric J, which
measures the distance between two text in
form. This idea is based on that, a evolved
text will always change the form of the source,
while still be related and expressing similar
meaning. To measure the similarity of two
texts in form, I used the distance of two texts’
deep learning features to represent the formal
similarity.

When calculating J, Euclid distance is not a
good choice. That is because, texts in a prop-
agation can not fully distribute in the whole
space. A simple explanation is that, all mean-
ingless texts like ”forward microblog” and
some simple emoji will be more closer in form,
and more likely to assemble in the same clus-
ter, while those texts with similar texts are
likely to assemble in another cluster. When
naively use Euclid distance, J will more pre-
fer those meaningless texts, however, what
I want J to find are texts in the same cluster
with source, but still far from the source to
find latent evolved text.

To solve this problem, I chose to measure
the distance J by the length of the shortest
path by hoops, and I stipulate that each text
can only be connected to the nearest k texts. In
this metric, a related rumor with more hoops
from the source is usually much different from
the source in form, which fits in the require-

ment for a evolved text. And, for those un-
related texts, they will not benefit from the
long distance in Euclid, and their J will not be
much higher than those true evolved texts.

Figure 7: Distance of form

To find a text evolved, I combined these two
distance metrics to decide if a text evolved.
I define Ei as the evolution degree between
rumor source and text i, which measures the
confidence for text i to be a evolved node.

Ei = Di + λJi

After generating deep learning features for
each text, these features can be considered as
projected onto a hyperplane. Ji indicates the
distance from source to the text i, when con-
strained on the hyperplane. While Di indi-
cates the similarity in semantic, which can be
considered as a distance in logistic. When J
in constrained on the hyperplane, D is the dis-
tance beyond the hyperplane.

Object the hyperplane in a higher dimen-
sion, the dimension with logistic. This hyper-
plane is curly in logistic, or semantic. There-
fore, this hyperplane shows like this.

In this figure, A is the source of a rumor,
while B is close to A in semantic, however, the
distance of form is also close to A, which indi-
cates that B represents the same meaning as A,
and no evolution happens. As for C, though
C is also close to A in semantic, but the form
distance from A to C along the hyperplane
is much longer than A to B. This shows that
C has similar, or at least related meaning as
A, but C significantly changed the form of A,
indicating that some malicious user might did
some change to the source, which leading to
an evolution.

6



Figure 8: Hyperplane of all texts

5 Experiment

In this part, I will introduce how I imple-
mented rumor detection model and evolution
detection model, and the visualization model
of a rumor propagation tree.

5.1 Rumor detection

5.1.1 Data preprocessing

In this part, I used the dataset from http :
//alt.qcri.org/ wgao/data/rumdect.zip,
which containing 2313 rumors and 2351
non-rumors.I split train and test by 60%:40%.

To establish a vocabulary, I removed all
punctuation and emoji from all texts in the
dataset. Then used jieba to split a text into a
list of words.

In order to get a vocabulary that can rep-
resents all texts’ most representative word,
I used term frequency-inverse document
frequency(tf-idf) to sort all words in the
dataset, which is a numerical statistic that is in-
tended to reflect how important a word is to a
document in a collection or corpus. Tf-idf con-
tains two parts. Term frequency represents the
frequency of a word, which is the raw count
of a term in a dataset. Inverse document fre-
quency is a measure of how much information
the word provides, which checks if a word is
common or rare across all documents.

td− id f (t, d, D) = t f (t, d) ∗ id f (t, D)

By sorting all words by tf-idf, I get a vocab-
ulary with size equal to 20000.

When transferring a text into a numerical
representation, I set the max length of a text
vector as 15, which is a relative best choice in
my experiment.

In order to evaluate the performance of
models in early detection, I set the length of a
tree propagation as 150, 300, 800.

5.1.2 LSTM model

I implemented a LSTM model to detect a ru-
mor at first. To extract features of words, I
added an embedding layer to project a word
into a 8-dim vector. Then fed data into a LSTM
model, which contains 32 units. In order to
avoid overfitting, dropout is set as 0.2. To get
the prediction of the input, a fully connected
layer is added after LSTM layer, and applied
sigmiod function to output a probability.

Here shows the structure of LSTM model.

Figure 9: Structure of LSTM model

Here shows the performance of LSTM
model.

propagation length accuracy
150 0.8574
300 0.8715
800 0.8598

As can be seen, the accuracy is highest when
maximum propagation length is 300, which is
an acceptable length for early detection. How-
ever, when propagation length is 800, the accu-
racy decreased, that is because most rumors in
this dataset is shorter than 800, which means
that too many zeros were padded into a rumor,

7



which cases a waste of time and influenced the
performance.

5.1.3 Tree-GRU model

To implement a Tree-GRU, I construct a tree
for all texts in a propagation tree according
to the forwarding relationship as parent and
child. For each node, maintain its text and hid-
den state h, while the text can be transferred
in to a vector by the same vocabulary and the
embedding layer trained in LSTM detection
model.

For each time doing forward propagation,
just traverse all nodes by layers from leaf to
the root, and compute hidden state hj for node
j based on all node j’s child nodes’ hidden
state (hi1, hi2, ..., hin). In tree-GRU, different
from a classical GRU, which only has one pre-
decessor input, but many predecessor hidden
states with variant numbers.

Here shows the structure in tree-GRU.

Figure 10: Structure of tree-GRU

Here, there are two strategies to combine
(hi1, hi2, ..., hin) to get hi: directly sum or
weighted sum.

• hi = ∑n
k=1 hik

• hi = ∑n
k=1 wikhik

For the first strategy, which assume that all
child nodes are equally important. In this case,
the hidden state used to update is the sum of
all child nodes’ hidden state.

Here shows the performance of the first
strategy:

However, naively sum all hidden state is
not a good choice, because in a propagation
tree, the sub-tree corresponding to a child
node are usually with different size, that

propagation length accuracy
150 0.8912
300 0.9182
800 0.9201

means, the importance of a child node’s hid-
den state is usually different, therefore, a bet-
ter choice is to consider different child node’s
weight. So here defines the weight of a child
based on its sub-tree’s size.

wi,k = n ∗
Si,k

∑n
k′=1 Si,k′

In this case, the larger a sub-tree is, then the
more impact this child node can make to the
parent node’s hidden state.

Here shows the performance of the second
strategy:

propagation length accuracy
150 0.8989
300 0.9214
800 0.9171

As can be seen in this table, the second strat-
egy out performs the first one when the prop-
agation length is 150 and 300, but worse than
the first one in 800.

However, this is an acceptable result. First,
early detection is usually more important in
rumor detection, and weighted strategy per-
forms better. Second, because about 65% ru-
mors in the dataset is shorter than 800, so this
case is of no reference value.

5.2 Evolution detection

In this part, I will introduce how I imple-
mented evolution detection.

5.2.1 Semantic distance

To measure how similar two texts are in se-
mantic, I trained a LSTM model to do this job.

At first, I took advantage of an existing tool
named as text2vec, which has a function to
measure how similar two texts is. Take Figure

8



6 for example, text2vec indicates that the simi-
larity for the last three texts to the first one is
0.9412, 0.8098, 0.5039.

However, this tools mostly measures if two
texts has similar topic and talking about the
same thing. However, what I want is not only
find texts that talking about the same thing,
but expressing almost the same meanings as
the source. So this tool in not enough. Here
shows an example in semantic similarity.

Figure 11: Semantic similarity

In this part, I took advan-
tage of a dataset from https :
//github.com/IAdmireu/ChineseSTS, which
can be used to learn the semantic similarity.

Here shows an example in the dataset.

Figure 12: An example of similar semantic

Figure 13: An example of different semantic

By training a classical LSTM model with
embedding layer, LSTM layer and fully con-
nected layer, the semantic model can return a
prediction to measure how two texts similar
in semantic, with input as a 2 ∗ max length
matrix generated from a vocabulary.

By training such a model. I get the MSE loss
as 0.00738 on average for each sample in test
set. And the prediction of the examples in Fig-
ure 6 is 0.9158, 0.7218, 0.0756, which perfectly
fits in this job.

5.2.2 Form distance

To learn the form distance J between two text,
this part is all based on such a theory: If two
texts are similar in form, then the distance
between their deep learning features should
also be close.

The reason that I chose deep learning fea-
tures to compute distance is that, in most
cases, texts in a propagation are usually much
shorter than the source, thus, if directly counts
how many words show up in both texts or
compute the distance after embedding layer,
too many zeros in a short text will impact the
distance.

To extract the deep learning features, or in
other word, to project all texts on to a hyper-
plane, I trained a classical auto-encoder to do
this job.

Figure 14: Auto-encoder

However, different from the usual applica-
tion of auto-encoder as a dimension reducing
tool, in this part, I project texts into high di-
mension, and thus extract deep leaning fea-
tures with dimension as 128.

After such projection, all texts can be con-
sidered as a point on a hyperplane. As men-
tioned above, it is not a good idea to calculate
the Euclid distance between texts. Therefore,

9



I assume that a point can only be connected
to the nearest 6 points, and replace Euclid dis-
tance with the shortest path’s hoops.

Here use the same example in Figure 6, the
form distance is 3, 5, 17.

However, in some rumor’s propagation tree,
not all texts can be connected by the nearest-
6-point strategy, and thus texts might form
into independent clusters, and the distance
can not be calculated. In this case, I connected
two texts in each cluster with the least Euclid
distance.

5.2.3 Evolution detection

To combine above two distance metric, here
defines Ei as the evolution degree between
rumor source and node i.

Ei = Di + λJi

In this part, λ is a hyper-parameter, and
should be carefully chose. I tried a varies of
values, and at last I chose λ = 0.15 to get a
better performance.

By sorting all texts in a propagation tree by
E, I can check which text in this tree are most
likely to be evolved.

5.3 Visualization of a rumor propa-
gation tree

In this part, I will combine the rumor detec-
tion part and evolution detection part to put
forward a visualization model

As mentioned above, a evolved rumor will
enhance the propagation of the rumor, which
means that such a evolved rumor should also
be a rumor when only checking its sub-tree.
Therefore, to comprehensively evaluate a text
in a propagation tree, I should consider the
confidence for a text to be a rumor, and the
probability for it to be a evolved rumor, and
the propagation scope of it.

Here gives some definition:

• Ci: Confidence for node i to be a rumor
source.

• Ni: How many users forwarded this mi-
croblog.

• Ei: Evolution degree between rumor
source and node i.

Based on the definition above, here defines
the metric of propagation contribution P for a
text in propagation tree:

Pi = Ci ∗ Ei ∗ log Ni

Based on all the metric above, I put forward
a model to visualize the propagation of a ru-
mor. Here shows an example:

Figure 15: An example of rumor

Figure 16: An example of rumor

This is a rumor years ago, it says that He
was paid to give malicious negative feedback
on iPhone.

Here is the visualization result of this ru-
mor:

In this result, each bubble represents a mi-
croblog in a propagation tree. And the size of

10



Figure 17: Visualization for a propagation tree

a bubble represents the propagation contribu-
tion of this text in the rumor propagation tree.
And the transparency of a bubble represents
the evolution degree of each text. For each
text in the tree, all its child would surround it
and forms into a circle. And the source text is
right in the center of the picture.

Here shows some bubbles’ text in this tree:

Figure 18: Some bubbles

As can be seen, the first two texts in this ex-
ample shows more obvious evolution, which
saying that He’s account was hacked, and
showing a sense of humor. While, in the last
two examples, they are either not very related
to the source, or totally the same as the source,
which should be of lower evolution degree.
As can be seen, their bubbles in the result is
more close to the transparent.

6 Conclusion

In this project, I put forward two model to
detect rumor based on RNN. The first model
is based on LTSM, and the second is a novel

Figure 19: Texts of some bubbles

GRU, which performs in a tree structure. Re-
sults shows that tree-GRU performs better
than the sequencial LSTM. Besides that, I used
two distance metric to measure the similarity
between two texts. I put forward a learning
method to measure the semantic similarity,
and a shortest-path-based method to measure
the form similarity between each projected
text. By combining these two distance metric,
and considering the propagation scope and ru-
mor index, I put forward a model to visualize
the propagation of a rumor.

References

[1] S. Kwon, M. Cha, and K. Jung, “Rumor de-
tection over varying time windows,” PloS
one, vol. 12, no. 1, 2017.

[2] T. Takahashi and N. Igata, “Rumor detec-
tion on twitter,” in The 6th International
Conference on Soft Computing and Intelligent
Systems, and The 13th International Sympo-
sium on Advanced Intelligence Systems, 2012,
pp. 452–457.

[3] Q. Zhang, S. Zhang, J. Dong, J. Xiong,
and X. Cheng, “Automatic detection of
rumor on social network,” in Natural Lan-
guage Processing and Chinese Computing.
Springer, 2015, pp. 113–122.

11



[4] F. Yang, Y. Liu, X. Yu, and M. Yang, “Au-
tomatic detection of rumor on sina weibo,”
in Proceedings of the ACM SIGKDD Work-
shop on Mining Data Semantics, 2012, pp.
1–7.

[5] J. Ma, W. Gao, P. Mitra, S. Kwon, B. J.
Jansen, K.-F. Wong, and M. Cha, “Detect-
ing rumors from microblogs with recur-
rent neural networks,” 2016.

[6] J. Ma, W. Gao, and K.-F. Wong, “Rumor
detection on twitter with tree-structured
recursive neural networks.” Association
for Computational Linguistics, 2018.

[7] T. Chen, X. Li, H. Yin, and J. Zhang, “Call
attention to rumors: Deep attention based
recurrent neural networks for early ru-
mor detection,” in Pacific-Asia Conference
on Knowledge Discovery and Data Mining.
Springer, 2018, pp. 40–52.

[8] Z. Jin, J. Cao, H. Guo, Y. Zhang, and
J. Luo, “Multimodal fusion with recurrent
neural networks for rumor detection on
microblogs,” in Proceedings of the 25th
ACM International Conference on Multime-
dia, ser. MM ’17. New York, NY, USA:
Association for Computing Machinery,
2017, p. 795–816. [Online]. Available:
https://doi.org/10.1145/3123266.3123454

12


