
Layout and Visualization of Large Scale Citation Network
Li Jingyu

517030910318

1 Introduction
Nowadays, the Internet has created many larger and larger communities. While many of these communities can
be represented as a directed graph, such as academic citation networks and social networks, how to visualize them
is a big problem. Traditional force-directed graph layout algorithms often produce desirable results. However,
these algorithms, such as ForceAtlas2 and Yifan Hu can only tackle a small scale graph about 100,000 nodes, while
today’s graph can be larger than millions or even billions of nodes. Instead of creating more and more powerful
single layout algorithms, another way is to create a framework that can be applied to any scale of networks, which
integrates the existing methods.

In this project, my work includes:

1. Design and implement an recursive and hierarchical large graph layout framework. The main idea is to
partition and layout sub-graphs recursively.

2. Choose Louvain as the partition (community detection) algorithm and ForceAtlas2 as the single graph layout
algorithm, and implement them. While ForceAtlas2 is implemented by existing toolkit interface, Louvain
algorithm is implemented from scratch by myself.

3. Test the algorithms on DBLP database, which contains a citation network with about 5,000,000 nodes and
50,000,000 edges, and visualize the results in static images.

4. Build a web demo to visualize the layout results and interact with the layout network.

The code is open sourced at https://github.com/LiTrevize/Citation-Network

2 Approach
2.1 Problem Statement
We have a citation network G = (V,E), where each node v denotes a paper and each edge e is a directed (vi, vj)
pair, which means j cites i. We want to get a layout L : G→ X × Y ×R, where X,Y are coordinates and R is the
size of the nodes. The layout should provide structured information; e.g. It puts related nodes together and form
clusters. Then how to layout G when |V | is very large?

2.2 Algorithm Design
Existing force-directed graph layout can often produces desirable results on small networks, as shown in Figure 1.
However, for larger graphs, these algorithms turn out to be inefficient and ineffective.

1

https://github.com/LiTrevize/Citation-Network

(a) ForceAtlas2 (b) Yifan Hu

Figure 1: Force-directed layout algorithms on small graphs

Therefore, to integrate these algorithms to larger graphs, we have to reduce the graph’s size. We can first
partition the graph into several small subgraphs (also called communities), and use small layout algorithms on each
of these sub-graphs. Each subgraphs themselves can be regarded as a supernode in the community supergraph, so
we can use algorithms on the supergraph as well. But either the subgraphs or the supergraph can be too large as
well, so we repeat the above operations recursively. Finally, we need to merge all these sub-layout into one final
layout. This is done by resize and squeeze the subgraph layout into its corresponding supernode (community). The
whole algorithm is shown below.

Algorithm 1: Large Graph Layout Algorithm
Data: Citation Network G = (V,E)
Result: Layout L = (X,Y,R) ∈ R|V | × R|V | × R|V |

1 L = LargeGraphLayout(G);
2 begin
3 if |V | < Vthres then
4 L← SmallGraphLayout(G);
5 else
6 Gsub, Gsup ← Partition(G);
7 foreach Gsub,i in Gsub do
8 Li ← LargeGraphLayout(Gsub,i);
9 end

10 Lsup ← LargeGraphLayout(Gsup);
11 n← |Gsub|;
12 L← MergeLayout(Lsup, L1, . . . , Ln);
13 end
14 end

So why would the proposed framework work? That is, why it’s more efficient than directly using small graph
layout algorithms on large networks. As shown in section 2.3.2, the implementation of partition algorithms can
be optimized to O(|V |+ |E|), while force-directed layout algorithms is only O(|V |2). Therefore, this framework is
based on a more efficient partition algorithm than single layout algorithm.

2

2.3 Partition Algorithms
2.3.1 Modularity

In the partition part of the algorithm, we partition the graph into many communities. Rather than random
partition, we want strong connection within each community and weak connection across different community.
This is a problem that has long been studied and termed as community detection problem.

A commonly-used metric for evaluating the partition of communities is the modularity:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj)

where Aij represents the weight of the edge between node i and j, ki =
∑

j Aij is the sum; of weights of the edges
attached to node i, ci is the community to which node i is assigned, and m = 1

2

∑
ij Aij is the number of edges.

While the formula may look complex, its physical meaning is very intuitive: The modularity tells the difference
of weighted sum of edges within a community to that in a random graph where each possible edge has an equal
probability to form.

So the problem now becomes a modularity maximization problem.

2.3.2 Louvain Algorithm

Louvain is a famous algorithm of modularity maximization problem. Itself is also a recursive and heirarchical
algorithm. The algorithm works out as shown in Algorithm 2.

Algorithm 2: Louvain Algorithm
Data: Citation Network G = (V,E)
Result: Partition Gsub and supergraph Gsup

1 Gsub, Gsup = Louvain(G);
2 begin
3 Assign each node i to a community: C(i)← i;
4 while the partition does not converge do
5 foreach node i in G do
6 Calculate ∆Qic: the gain by removing node i from its community and merge it to a neighboring

community c;
7 c∗ ← argmaxc∆Qic;
8 C(i)← c∗;
9 end

10 end
11 Aggregate each community into a supernode, and construct a supergraph Gsup;
12 if C(i) does not change after it’s initialized then
13 Calculate Gsub from C;
14 else
15 G∗ ,_ ← Louvain(Gsup);
16 Update C by mapping from G∗;
17 Calculate Gsub from C;
18 end
19 end

The difference of modularity ∆Q by removing i from its community and merge it to a neighboring community
C can be calculated and simplified as:

∆Q =
ki,in
2m
− kiΣtot

2m2

where Σtot is the sum of the weights of the links incident to nodes in C, ki is the sum of weights of the links incident
to node i, ki,in is the sum of weights of the links from i to all nodes in C.

As shown by the formula, Louvain only needs local information to update, which makes it suitable for parallel
computation. The algorithm procedure in also shown in Figure 2.

3

Figure 2: Louvain algorithm procedure

2.4 Small Graph Layout: ForceAtlas2
ForceAtlas2 is a force-directed graph layout algorithm. It imagines attractive force and repulsive force between any
two nodes and layout the graph by letting the nodes move by the forces and get a balanced state. In the original
version, the attractive force is proportional to the Euclidean distance by the order of 1:

Fa(n1, n2) = w(e)d(n1, n2)

and the repulsive force is proportional to the Euclidean distance by the order of -1:

Fr(n1, n2) =
(deg(n1) + 1)(deg(n2) + 1)

d(n1, n2)

But the order of the two forces can have other combinations such as (0,−2), where 0 means logarithm.

3 Implementation
In this section I will introduce how to implement the large graph layout algorithms and each of it components. I
will also introduce some optimization methods to reduce time and space complexity.

3.1 Environment
• Java 8

• Python 3.7

3.2 Data Preparation
I choose DBLP database, a computer science bibliography that provides open bibliographic information on major
computer science journals and proceedings. It has about 5,000,000 papers and 50,000,000 citations among them-
selves. I fetch the all the data from Acemap MongoDB database. The DBLP paper list are stored in document
DBLP of collection crawlerPaper, while the paper information (such as title, citations) are stored in the document
paper of collection acemap. And there is a mapping of paper id in DBLP to that in acemap. Since they are in
different collections and MongoDB does not support table join, I have to fetch each part of data individually and
process them on my local computer. I use the MongoDB API for python for this part. Below I show the code for
fetching all the DBLP mapping in the paper_mapping document.

4

1 client = MongoClient(ADDR, PORT,
2 username=USERNAME,
3 password=PASSWORD)
4
5 def get_mapping():
6 ””” ge t the mapping of dblp_id to acemap_id”””
7 with open(’ dblp2am . csv ’, ’w ’) as f:
8 for mapping in client.crawlerMapping.paper_mapping. find(
9 { ’ _id ’: { ’ $regex ’: ’ dblp ’}}

10):
11 f.write(’ {}\ t {}\n ’.format(*mapping.values()))

After I fetch all the data, I store them in two csv files, one for all the node id and related title information,
another for the edge lists, which specifies the citation.

3.3 Louvain
I implemented Louvain algorithm from scratch in Java. Why I choose Java is because it’s a static language and it’s
more convenient to makes some optimization on it, such as memory usage, data structure and multi-threading.

First I define to inner class of MyLouvain: Node and Community.

1 private class Node {
2 int id;
3 int k_i; // sum of edge weight o f a l l i t s neighbors , inc lud ing s e l f −loop
4 int cid;
5 int size; // for super−node , s i z e i s the number of atomic node
6 int loop;
7 List <Node> neighbors;
8 List <Integer> weights;
9 }

10 private class Community {
11 int id;
12 int sum_tot;
13 int size;
14 int size_default;
15 }

Then I define the attributes of MyLouvain. Here I use a hash map for communities because its fast access. I use
an array list for nodes because the algorithm only needs sequential access to nodes in the iteration, so there is no
need to use a hash table and it can save memory.

1 public class MyLouvain {
2 private List <Node> nodes;
3 private List <Node> nodes_default;
4 private Map<Integer, Community> communities; // community_id −> sum_tot : sum of k_i for

a l l nodes in c
5 private int num_edges; // sum of weights o f a l l the edges <=> number of edges for the

o r i g i n a l network
6 }

The call function of Louvain algorithm is the execute(). Here firstPhase() and secondPhase() correspond
to the modularity optimization part and community aggregation part in the algorithm. firstPhase() return a
boolean value which denotes whether the community partition has changed in the last iteration, so it marks the
end of the algorithm.

1 public void execute() {
2 firstPhase();
3 nodes_default = nodes;
4 secondPhase();
5
6 int round = 0;

5

7 while (firstPhase()) {
8 round++;
9 updateNodesDefault();

10 secondPhase();
11 }
12 }

The implementation of firstPhase() and secondPhase() is complicated and long so I won’t paste it here.
They are in the source code directory attached with the report. Here I only emphasize some key points.

• The network are stored as adjacency table to have quick access to each node and its neighboring nodes

• The community partition are stored in a hash table to have quick access.

• My Louvain implementation converges in no more than several hundred iterations. And the time complexity
for one iteration is O(|V |+ |E|)

The above time complexity explains why the whole proposed framework will work.

3.4 ForceAtlas2: Gephi Toolkit
Gephi toolkit is a Java library that implements many graph layout algorithms, including ForceAtlas2. However, the
whole package is written in a singleton classes and is inconvenient to use. So I write a CitationNetwork class that
further encapsulates the Gephi library. Besides, Gephi library neither accepts input from csv files or databases, so
I add these two supports as well.

The outline of CitationNetwork is shown below. Most of the attributes are Singleton classes defined in the
library.

1 public class CitationNetwork {
2 static private ProjectController pc = Lookup.getDefault().lookup(ProjectController.class

);
3
4 private Workspace workspace;
5 private GraphModel graphModel;
6 private PreviewModel previewModel;
7
8 private AppearanceController appearanceController;
9 private AppearanceModel appearanceModel;

10 DirectedGraph graph;
11 }

Before the layout process, I first resize all the nodes. If the nodes are original nodes (i.e. papers), then I resize
them by their out degrees (i.e. number of citations). If they are community nodes, I resize them by the community
size.

1 public void rankSizeBy(String attr , int minSize, int maxSize) {
2 // Rank s i z e by degree
3 Function sizeDegreeRanking;
4 if (attr.equals(” degree ”))
5 sizeDegreeRanking = appearanceModel.getNodeFunction(graph, AppearanceModel.

GraphFunction.NODE_OUTDEGREE, RankingNodeSizeTransformer.class);
6 else {
7 Column attrCol = graphModel.getNodeTable().getColumn(attr);
8 sizeDegreeRanking = appearanceModel.getNodeFunction(graph, attrCol,

RankingNodeSizeTransformer.class);
9 }

10 RankingNodeSizeTransformer sizeDegreeTransformer = (RankingNodeSizeTransformer)
sizeDegreeRanking.getTransformer();

11 sizeDegreeTransformer.setMinSize(minSize);
12 sizeDegreeTransformer.setMaxSize(maxSize);
13 appearanceController.transform(sizeDegreeRanking);
14 }

6

The most import method of the class the to execute the layout algorithm.

1 public void layout_fa2(int num_iter, boolean linLog, boolean adjustSize) {
2 System.out.println(”Layout␣” + getNodeCount() + ” . . . ”);
3 ForceAtlas2 fa2 = new ForceAtlas2(null);
4 fa2.setGraphModel(graphModel);
5 fa2.setAdjustSizes(adjustSize);
6 if (linLog) {
7 fa2.setLinLogMode(true);
8 fa2.setScalingRatio(0.2);
9 } else {

10 fa2.setLinLogMode(false);
11 fa2.setScalingRatio(1d);
12 }
13
14 fa2. initAlgo();
15 for (int i = 0; i < num_iter && fa2.canAlgo(); i ++) {
16 fa2.goAlgo();
17 }
18 fa2.endAlgo();
19 System.out.println();
20 }

3.5 Putting all together: File System and Multi-threading
In this section I will combine all components and implement the whole large graph layout algorithm.

Since the overall data is huge, we cannot store all the intermediate and temporary data in the memory, or it will
explode. Also, it is inefficient to put these all in a database, because our algorithm will generate hierarchical data
and in each level, we only need sequential access to the data. Traditional databases cannot provide hierarchical
storage and search of entries is time consuming and unnecessary. Therefore, I store all the intermediate data in
the file systems and utilize the directory structure and sequential read of files. Although I/O access is slower than
memory, it will not cause out of memory error. So for either partition or single layout algorithms, I export the
results to csv files. Below is an example of the partition function:

1 public static void partition(String nodeCsv, String edgeCsv, String outDir) {
2 File dir = new File(outDir);
3 if (dir. isDirectory()) return;
4 MyLouvain lou = new MyLouvain(nodeCsv, edgeCsv);
5 lou.execute();
6 if (!dir. isDirectory()) dir.mkdir();
7 lou.ensureOneNodeCommunityID();
8 lou.saveCommunityPartition(outDir + ”/ p a r t i t i o n . csv ”);
9 lou.partitionAndSaveTo(outDir + ”/community”);

10 lou.saveMegaGraph(outDir + ”/mega_graph”);
11 }

Alss, each recursion call of the top-level function can be regarded as a single task. In other words, layout of
subgraphs can be carried out in parallel. Only when we merge all the sub-layouts should we wait for the tasks of
the same level to finish. This architecture is the classical fork-join multi-threading pattern.

So first, I created a thread pool to better limit the number of threads and manage them.

1 private static int nThreads = 6;
2 private static ExecutorService fixedThreadPool = Executors.newFixedThreadPool(nThreads);
3 private static ThreadPoolExecutor tpe = (ThreadPoolExecutor) fixedThreadPool;

And for layout function of all the subgraphs, I submit all the independent tasks to the thread pool and use the
Future mechanism to wait for all tasks to join before the merge operation.

1 public static void layoutCommunity(String baseDir) {
2 File comDir = new File(baseDir + ”/community”);
3 String[] fileNames = comDir. l i s t ();

7

4 File layoutDir = new File(baseDir + ”/ layout ”);
5 if (!layoutDir.exists()) layoutDir.mkdir();
6 List <Future<?>> futures = new ArrayList<>();
7
8 for (String fileName : fileNames) {
9 File layoutFile = new File(baseDir + ”/ layout /” + fileName);

10 if (layoutFile.exists()) continue;
11 Future<?> future = layout(baseDir + ”/community_node/” + fileName,
12 comDir.getPath() + ”/” + fileName,
13 baseDir + ”/ layout /” + fileName,
14 baseDir + ”/” + fileName.substring(0, fileName.indexOf(” . ”)), false);
15 if (future != null) futures.add(future);
16 }
17 for (Future<?> t : futures)
18 try {
19 t.get();
20 } catch (Exception e) {
21 e.printStackTrace();
22 }
23 }

The merge part is long because it has to iterate over all subgraph layout files and the supergraph layout to fit
all subgraphs to the original large graph. Then I also store the layout results in a csv files. There are five columns:
the node id, its x and y coordinates, its radius and the community id it belongs to. Since the code for merge is too
long, I don’t post it here.

3.6 Statistics
To get a grasp of how the algorithm goes, I first plot the community size distribution of the top-level graph in
Figure 3

Figure 3: Community size distribution

We can see that the largest community has size over 600,000 while most communities have very small sizes. To
get a clearer vision, I zoom in to the size smaller than 30 and get Figure 4. We can see that size one communities are
most common, meaning that they have not citation within the DBLP database, maybe due to the incompleteness
of the data source.

8

Figure 4: Community size distribution in range 0 to 30

4 Visualization
I first try visualization with SVG format images. SVG format utilize the xml format and defines its special element
labels, such as circle and line. I write my own SVG generator from my layout files.

1 public class SVG {
2 private Document document;
3 Element svg;
4 Element eNode, eEdge;
5
6 public SVG() {
7 try {
8 // crea te the b u i l d e r f ac to ry
9 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

10 DocumentBuilder db = factory.newDocumentBuilder();
11 document = db.newDocument();
12 // do not d i s p l a y standalone=”no”
13 document.setXmlStandalone(true);
14
15 svg = document.createElement(” svg ”);
16 svg.setAttribute(”xmlns”, ” http ://www.w3 . org /2000/ svg ”);
17 svg.setAttribute(” ver s ion ”, ” 1 .1 ”);
18 eEdge = document.createElement(”g”);
19 eEdge.setAttribute(” id ”, ” edges ”);
20 svg.appendChild(eEdge);
21 eNode = document.createElement(”g”);
22 eNode.setAttribute(” id ”, ”nodes”);
23 svg.appendChild(eNode);
24
25 document.appendChild(svg);
26 } catch (Exception e) {
27 e.printStackTrace();
28 }
29 }
30 }

9

For function addNode, it creates circles for layout entries.

1 public void addNode(String id, String x, String y, String r) {
2 Element e = document.createElement(” c i r c l e ”);
3 e.setAttribute(” id ”, id);
4 e.setAttribute(”cx”, x);
5 e.setAttribute(”cy”, y);
6 e.setAttribute(” r ”, r);
7 e.setAttribute(” f i l l ”, ” black ”);
8 e.setAttribute(” f i l l −opacity ”, ” 0 .5 ”);
9 eNode.appendChild(e);

10 }

I run my code and the generated svg file of the whole DBLP has more than 1 GB, which is too large to be
displayed. So I limit the nodes to that with citation larger than 50 and edge size to be no more than double the
node size. Then the generated svg file has 37 MB, and is shown in Figure 5.

Figure 5: The whole DBLP citation network

To get a more detailed view, I choose some largest communities and show them below.

10

(a) size 250418 (b) size 227781

(c) size 211922 (d) size 113955

Figure 6: Layout of selected communities

5 Web Demo
I write a web demo where users can see the layout network, and find out what papers are grouped together and
have great influence.

5.1 Environment and Dependencies
• Java 8

11

• Apache Maven 3.6.3

• Spring Boot 2.3.0

5.2 Architecture
The web demo uses the three-layer MVC pattern architecture.

Figure 7: Web demo architecture

5.3 Export to MongoDB
Since in the web demo, search of certain nodes would be frequent, so it is best to export the layout data to the
database. Here I choose MongoDB. Similar to the data fetch part, I use python to do the export.

Figure 8: Demonstration of layout MongoDB structure

5.4 Spring Boot
To write the logic of the web application, we use spring boot as backend server and programming platform. First,
add database dependencies and configurations in application.properties.

12

1 spring.data.mongodb.uri=mongodb:// root : pwd@127 .0 .0 .1 :27017/ admin
2 spring.data.mongodb.database=citationNetwork

Then define a class Node to serve as the bridge variable between controller and the database.

1 @Document(collection = ”node”)
2 public class Node {
3 @Id
4 public int id;
5 public int citation;
6 public float x, y;
7 public float r;
8 public String t i t l e ;
9 public int cid;

10 public List <Integer> citedBy;
11 }

In the main controller, the code takes in http GET request and return the specified layout information to the
front end page.

1 @Controller
2 public class MainController {
3 @Autowired
4 private MongoTemplate mongoTemplate;
5 private String defaultPath = ” s r c /main/ re source s / s t a t i c /”;
6
7 @RequestMapping(value = ”/”, method = RequestMethod.GET)
8 public ModelAndView index(@RequestParam(value = ” c i t e ”, required = false, defaultValue =

”200”) int cite) {
9

10 List <Node> nodes = getCiteGte(cite);
11 ModelAndView mv = new ModelAndView(” index ”);
12
13 mv.addObject(”nodes”, nodes);
14 mv.addObject(”view”, viewBox(nodes));
15 mv.addObject(” c i t e ”,cite);
16 mv.addObject(”num”,nodes. size());
17 return mv;
18 }

5.5 Web Page Template
In the front page the HTML elements uses thymeleaf template pattern to generate a new web page. Here I write
an svg element and use the data from backend to create the nodes. I also define mouse move over event to display
the paper title.

1 <div>
2 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
3 <svg xmlns=” http ://www.w3 . org /2000/ svg ” version=” 1 .1 ” th:viewBox=”${view}” width=”100%”

height=”100%”>
4 <g id=”nodes” th:each=”n : ␣${nodes}”>
5 <circle th:cx=”${n . x}” th:cy=”${n . y}” th: id=”${n . t i t l e }” th:r=”${n . r }” th:label=

”${n . t i t l e }” onclick=”sub (event) ” onmouseover=” show_tit le (event) ” f i l l =”
black ” f i l l -opacity=” 0 .5 ”/>

6 </g>
7 </svg>
8 </div>

13

5.6 Demonstration

(a) Main Page

(b) Subgraph Page

Figure 9: Web Demo. When the mouse move over a node, the above will show the title for the paper. When
clicking it, it will jump to the subgraph page, where it will show the partitioned community

Checking the community in the Figure 9(b). We found these papers: Distributed Representations of Words and
Phrases and their Compositionality, Glove: Global Vectors for Word Representation, Bleu: a Method for Automatic
Evaluation of Machine Translation, Class-based n -gram models of natural language, etc. So it means the proposed
algorithm indeed group together papers of similar fields.

14

6 Conclusion
In this project, I implement an recursive and hierarchical large graph layout framework in Java and successfully
layout the DBLP database of size 5,000,000. I write a svg generator that accepts input from csv files and MongoDB
database. I build a basic web demo to show what papers are grouped together and what their influence is. For
future work, I will add more features to the web demo, such as search.

References
[1] Mathieu Jacomy, Sebastien Heymann, Tommaso Venturini, and Mathieu Bastian. ForceAtlas2, A Continuous

Graph Layout Algorithm for Handy Network Visualization. 2012.

[2] Pasquale De Meo, Emilio Ferrara, Giacomo Fiumara, and Alessandro Provetti. Generalized Louvain method
for community detection in large networks. International Conference on Intelligent Systems Design and Appli-
cations. 2011

[3] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experiment. 2008.

[4] Gephi Tutorial Quick Start. Retrieved from https://gephi.org/toolkit/

[5] Spring Boot Guide. Retrieved from https://www.springcloud.cc/spring-boot.html

15

https://gephi.org/toolkit/
https://www.springcloud.cc/spring-boot.html

	Introduction
	Approach
	Problem Statement
	Algorithm Design
	Partition Algorithms
	Modularity
	Louvain Algorithm

	Small Graph Layout: ForceAtlas2

	Implementation
	Environment
	Data Preparation
	Louvain
	ForceAtlas2: Gephi Toolkit
	Putting all together: File System and Multi-threading
	Statistics

	Visualization
	Web Demo
	Environment and Dependencies
	Architecture
	Export to MongoDB
	Spring Boot
	Web Page Template
	Demonstration

	Conclusion

