EE447 PROJECT REPORT

RECOMMENDATION AND DEEP USER PORTRAIT BASED ON MOBILE PERSONALIZATION

Jing Hongyi(517030910317)
He Wendi(517030910315)

Pang Lianyu(517030910322)
Fan Tingyu(517030910312)

June,19th 2020

Abstract

This part is written by Jing Honyi and Fan
Tingyu

Nowadays, there are a lot of algorithms
of recommendation. Most of them have an
immense label library, the recommendation
system collects the behavior of users, and
map these behaviors to some labels in the
library. Everytime when user’s behavior is
collected, the weight of related labels will
be enhanced. In this way, we can get a user
profile which describes the interests of users.

There is a certain difference between the
projects we do and the traditional recommen-
dation system. The traditional recommenda-
tion system will pay attention to the user’s
preferences and scoring for different products,
which is a quantitative method, but there is
no scoring condition in our recommendation
system, so we prefer the relationship between
text processing and natural semantics.

There is a big problem with this approach,
which is the cost of constructing such an im-
mense label library. In most cases, like Zhihu
and Douban, these labels are collected manu-
ally, which takes a lot of time and manpower.
The maintenance costs are high, too, because
the maintainer of the website needs to add
new words to the library at any time. That’s
where our ideas come from, we want to de-
sign a recommendation system which doesn’t
need such a reluctant label library.

We propose a recommendation system
based on clustering algorithm and word vec-
tor, these two methods are all unsupervised.

We also design a network to demonstrate our
recommendation system.

1 User Profiling

This part is written by Fan Tingyu

The generation of user profile is di-
vided into 3 processes: TF-IDF matrix,
clustering and word vector. The generation
process of user profile is totally unsupervised,
which means it doesn’t need any manually
labeled data, or any form of label libraries.

1.1 TF-IDF

TF-IDEF, short for term frequencyinverse
document frequency, is a numerical statistic
that is intended to reflect how important a
word is to a document in a collection or cor-
pus. It is often used as a weighting factor in
searches of information retrieval, text mining,
and user modeling.

1.1.1 Term frequency

In the case of the term frequency tf(t,d),
the simplest choice is to use the raw count of a
term in a document, i.e., the number of times
that term t occurs in document d.

1.1.2 Inverse document frequency

The inverse document frequency is a mea-
sure of how much information the word pro-
vides, i.e., if it’'s common or rare across all

documents. It is the logarithmically scaled
inverse fraction of the documents that con-
tain the word (obtained by dividing the total
number of documents by the number of doc-
uments containing the term, and then taking
the logarithm of that quotient).

idf(t,D) = longTfYted}'

where N is the total number of documents
in the corpus N = |D|, [{d € D :ted}| is
the number of documents where the term ¢
appears. In practice, ¢ is usually not in the cor-
pus, which leads to a division-by-zero. There-
fore, we usually add |[{d € D: t € d}| by 1

1.2 Clustering

For each article A which is read or com-
mented by a user, We can use TF-IDF to trans-
form it into matrix form, i.e. A’ = TF —
IDF(A), then store A’ in a clustering pool
P. We can use K-means algorithm to cluster
the pool. The clustering result is some cen-
tral points which can represent the interest
of user. We can select some words in these
central pools with high TF-IDF value.

There are 2 problems with this ap-
proach. As user behavior continues to be
recorded, the size of clustering pool will in-
crease, time spent on EM algorithm will in-
crease. The second is that we didn’t take
user’s long term interest or short term interest
into consideration, every article in the cluster-
ing pool is equally regarded.

1.2.1 Improvement

We can limit the size of pool, everytime
when an article is included, an old one will
be excluded. Also, we allocate a weight to
each article, to reflect the time that the article
stays in the pool. Here we use temperature
coefficient t = a” Where n is the index of the
article in the pool, « is a constant € {0,1} . «
larger means the system pays more attention
to user’s long-term interest, « lower means
the system pays more attention to user’s short-
term interest.

Also, we need to update the optimization
goal of K-means algorithm. The original goal

of K-means algorithm is to minimize:

Y, Lxe, 1% — pll

The optimization goal of Weighted K-means
is to optimize:

Yo Yvec; f(x) [|x — pui|

Where f(x) is the temperature coefficient
we’ve mentioned above.

The updated k-means algorithm will be:
Yyec, f(x))x;
E step: y; = %
M step: z; = argmin ||x; — j|

2 Word Embedding
This part is written by Jing Hongyi

In natural language processing, we
need to quantify the similarity of Chinese
words, and transform the corresponding
user profiles into a unified word vector
form. In short, word embedding technology
transforms words into dense vectors, and
for similar words, the corresponding word
vectors are also similar.In natural language
processing tasks, we need to consider
how words are represented in computers.
Generally, there are two representations:
one hot representation and distribution
representation.

2.1 One-hot Representation

Traditional natural semantic processing
methods based on rules or statistics regard a
word as an atomic symbol.It is called one hot
representation. One hot representation repre-
sents each word as a long vector. The dimen-
sion of this vector is thesaurus size. Only one
dimension in the vector has a value of 1, and
the other dimension is 0,and this dimension
represents the current word.

2.2 Distribution Representation

Distributed representation is to transform
words into a distributed representation, also
known as word vector. Distributed representa-
tion represents a word as a continuous dense

vector of fixed length,which makes the con-
cept of “distance” exist between words, which
is very helpful for many natural language pro-
cessing tasks.

2.3 Word Embedding Production

By counting the co-occurrence times of
words in a window with a specified size in
advance, the number of co occurrence words
around the word is taken as the vector of
the current word. Specifically, we define
word representation by constructing a co-
occurrence matrix from a large number of cor-
pus texts. For example, the corpus is as fol-
lows:

o I like deep learning.
e Ilike NLP.
e Ienjoy flying.

Then the co-occurrence matrix is as follows:

5

counts

|

like
enjoy
deep
learning
NLP
flying

learning NLP
0 0

2
0
0
1
0
1
0
0

O R OO Q0O0 QoK
O kR R = OO oo

Figure 1: Co-occurrence matrix

To some extent, the word vector defined
by the matrix alleviates the problem of one
hot vector similarity of 0, but it does not solve
the problem of data sparsity and dimension
disaster.

Since the discrete word vector based on
co-occurrence matrix has the problem of high
dimension and sparsity, a natural solution is
to reduce the dimension of the original word
vector, so as to get a dense continuous word
vector. For the matrix in Figure 1, SVD de-
composition is carried out to obtain the matrix
orthogonal matrix U, and the normalized ma-
trix U is as follows:

1 . 0.10 0.38 -0.18
like -017 031 0.18
enjoy X 0.16 z -0.58
deep 0.35 -0 045

learning . -0.! -0. 0.35
NLP . -0. -0. 0.13

flying ¥ -0. - -0.51
- -0.03

Figure 2: SVD result’s U matrix

SVD obtains dense matrix of word, which
has many good properties: words with simi-
lar semantics are similar in vector space, and
even can reflect the linear relationship be-
tween words to a certain extent.In our project,
we use the pre trained Zhihu language model
to better analyze the Zhihu user behavior text.

3 Collaborative Filtering

This part is written by Jing Hongyi and He
Wendi

Collaborative filtering algorithm is a
well-known and commonly used recommen-
dation algorithm. It is based on the mining of
the user’s historical behavior data to find the
user’s preference bias, and predict the product
that the user may like to recommend. That is
to say, common functions such as “guess what
you like” and “people who buy this product
also like”. Its main implementation consists
of:

e Recommend to you according to the peo-
ple you are alike

e Recommend similar items to you accord-
ing to your favorite items

Therefore, the common collaborative fil-
tering algorithms can be divided into two
types: user based collaborative filtering and
item based collaborative filtering. The char-
acteristics can be summarized as “people
gather by category, and objects are divided
by group”, based on which prediction and
recommendation can be made.

3.1 User-based

There are two main problems to be solved
in the implementation of user based collabo-
rative filtering algorithm. One is how to find
people with similar interests, that is, to cal-
culate the similarity of data.To calculate the
similarity, we need to choose different similar-
ity calculation methods according to different
data characteristics. There are several com-
mon calculation methods.Because our user
portraits are word vector forms, we mainly
use the second method:

(1)Jaccard similarity coefficient:

|ANB|
A,B) = 1
(I)Angle cosine,two n-dimensional

sample points A (Xi1,X12,.., X1,) and B
(X21, X22, -+ X2n):
n
COS(Q) — Zk:] xlkxzk (2)
\/ Y1 X \/ Y1 %5

When we are looking for people with the
same hobbies, we may find many people, for
example, hundreds of people like commodity
a, but there may be dozens of people who like
commodity B at the same time with you. Their
similarity is higher. We usually set a number k,
and the K person with the highest similarity is
called the nearest K user as the recommended
source group body.

We extract a fixed number of keywords
from the user’s profile we obtained before,
and then convert them into word vectors with
fixed dimensions. Then we compare the user’s
profile word vectors with those of other users
to obtain the five users with the highest co-
sine similarity. Then we process the articles
concerned by these users and compare them
with the user’s profile word vectors 20 arti-
cles with the highest similarity were recom-
mended.This is the collaborative recommen-
dation algorithm based on users. The sum-
mary steps are as follows:

1. To calculate the similarity of other users,
you can use the reverse query table to
remove some users

2. Find K users similar to your mouth based
on similarity

3. Among the items that neighbors like, the
recommendation of each item is calcu-
lated according to the similarity with you

4. Recommend items based on similarity

3.2 Item-based Collaborative Filter-
ing

Item-based Collaborative Filtering and User-
based Collaborative Filtering are two types of
collaborative filtering recommendation algo-
rithm which share some similarity and differ-
ences between each other.

Since the comparison between user and user
could have limited intersection due to the
scarcity of the information the user graph re-
veals, which may probably result in failure of
efficient recommendation, so it is helpful to
examine and analysis each items of the users.

The following will show how we apply
Item-based Collaborative Filtering to make
recommendation for users and the improve-
ment of combining the Item-based Collabora-
tive Filtering algorithm with user graph.

One of the major differences for Item-based
Collaborative Filtering is that it mainly fo-
cuses on each item, instead of each user in
User-based Collaborative Filtering. So, we
need to compare the similarity between item
and item, or in other words articles and arti-
cles, instead of the users and users.

Specifically, we focus on all the articles of
the target user compare them with the rest
of the articles of other users. For each two
articles, we analysis the keywords recorded in
the file all questions info.txt which is obtained
by previous crawlers and clustering method.
Then, we apply the word vectors method to
transform each key word to a vector.

For each two word-vectors, representing a
keyword of one of the article of the target user
and a keyword of one of the article if the other
users, we can calculate their matching simi-
larity by computing their Pearson Correlation
Coefficient shown in the following formula.

T er(Bus = Ri)(Bay — By)
VE wer(Bui — B e (Rus — R)?

sim(i, j) =

If the value of the Pearson Correlation Co-
efficient for the two vectors exceed a certain
threshold, then this pair of two keywords will
be recognized as a close matching and we will
add the value of the Pearson Correlation Coef-
ficient to the score of the two articles contribut-
ing to the similarity of the two articles. After
comparing each possible pair of keywords of
the two articles, we can obtain a matrix of the
score representing the similarity between each
pair of articles.

As for each article of the target user, we
can easily find the closest matching articles
according to the results of similarity values.
Thus, the articles of the other users with top
five highest similarity values will be recom-
mended to the target user.

i

a,b.d

[ED0O00
b.c.e 0 o[

0
c.d < il . 2| 2[4

b.c.d o alalz]2

= falblclole . i
6

3.3 Improvement - Combination of
User Graph and Item-based
Collaborative Filtering

Since the Item-based Collaborative Filtering
needs to compute and compare a large scale
of values, it is probably a little bit time-
consuming and inconvenient as such algo-
rithm has to focus on each pair of articles
instead of users. Then, we come up with a
simple idea that can help to make some im-
provement.

That is, we can make comparison between
the user graph of the target user and the arti-
cles of the rest of the users, instead of directly
compare each pair of articles. Such method
not only reduces the time complexity by such

replacing, but also remains the information of
different articles of the other users preserving
both accuracy and efficiency.

Specifically, we focus on the user graph, a
set of key words that represents the overall im-
age of a user, of the target user. Then, for each
articles of the rest of the users, we can simply
compare the keywords in the user graph of the
target user and the keywords of each articles
of the other users.

And, we use the similar method including
word-vector transformation, Pearson Correla-
tion Coefficient computing, threshold match-
ing, etc. Then, we can easily find the closest
matching articles to the target users accord-
ing to the results of similarity values sorted in
ascending sequence as the recommendation
articles for the target user.

Product 1 Product 2 Product 3 Product 4

User1 User2 User3

4 Latent Semantic Analysis
This part is written by Pang Lianyu

Latent semantic analysis (LSA) is a tech-
nique in natural language processing, in
particular distributional semantics, of analyz-
ing relationships between a set of documents
and the terms they contain by producing a
set of concepts related to the documents and
terms.

LSA assumes that words that are close in
meaning will occur in similar pieces of text
(the distributional hypothesis). A matrix con-
taining word counts per document (rows rep-
resent unique words and columns represent
each document) is constructed from a large
piece of text and a mathematical technique
called singular value decomposition (SVD)

d d

Q.
Q.
Q.

d3 di ds ds
ship 1 0 1 0 0 O
boat [0 1 0 0 0 O
ocean|1 1 0 0 0 O
wood |1 O O 1 1 O
tree O 0 0 1 o0 1

Figure 3: A: term-document matrix

is used to reduce the number of rows while
preserving the similarity structure among
columns.

Documents are then compared by taking the
cosine of the angle between the two vectors (or
the dot product between the normalizations of
the two vectors) formed by any two columns.
Values close to 1 represent very similar docu-
ments while values close to 0 represent very
dissimilar documents.

4.1 Process

Assume that we have 6 documents dq, dy, ..., dg.
Then we can get the term-document matrix A
from these documents.

In this matrix, each row represents a
term/word, and each column represents a
document. The value in i-th row and j-th

column means that the i-th word appears v?%

L]
times in the j-th document.
Then we do a SVD decomposition on A and

we get three matrix U,D,V.
A=UuDVT

U is a term-topic matrix. Each row in U
represents a term, and each column represents
a topic. The value in i-th row and j-th column
means the proportion of the i-th word in the
j-t topic.

D is a topic-weight matrix, and it’s a diago-
nal matrix. Each row in D represents a topic,
and each column also represents a topic. The
value vP means the proportion of the i-th topic
in all documents.

VT is a topic-document matrix. Each row
in VT represents a topic, and each column

————— -

I 2: 3 4 5
ship || —0.44 —0.30 10.00 0.00 0.00
boat [—0.13 -0.33 10.00 0.00 0.00
ocean || —0.48 —0.51 10.00 0.00 0.00
wood || —0.70 0.35 1 0.00 0.00 0.00
tree 1026 0.65 000 0.00 0.0

two latent topics

Figure 4: U: term-topic matrix

1 2 3 4 5

216 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
0.00 0.00 0.00 0.00 o0.00
0.00 0.00 0.00 0.00 o0.00
0.00 0.00 0.00 0.00 0.00

o oW =

Figure 5: D: term-weight matrix

represents a document. The value in i-th row
and j-th column means the proportion of the
i-th topic in the j-t document.

| d dy d3 da ds de
-0.7% -0.28 -0.20 -0.45 -0.33 -0.12
-0.29 -053 -0.19 0.63 0.22 0.41
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

G & W N =

Figure 6: VT :topic-document matrix

5 About our work

The specific division of labor of team
members is:

e Jing Hongyi:Word Embedding,User-
based Collaborative Filtering

e Fan Tingyu:Article Clustering,User Pro-
file

o He Wendi:Item-based Collaborative Fil-
tering and improved version

e Pang Lianyu:Word Embedding,Latent Se-
mantic Analysis

All the codes and resources can be got from:
https://github.com/JingHongyi/EE447_FinalProject

