Rumor Source Detection with Graph
Convolutional Networks

Longjie Zheng Yaxin Liu
517030910360 517030910307
June 20, 2020

1 Background

Detecting rumors in social networks is one of the key issues for defeating ru-
mors automatically. There are some methods which detect multiple rumor sources
in an assumed setting in which the underlie propagation model is known, How-
ever, in most real settings, we are not accessible to the propagation model. LPSI(label
based propagation source identification) is a leading algorithm which tries to avoid
the underlie propagation model by using label propagation. Nonetheless, it still
suffer from drawbacks that the node label is simply an integer which may restrict
the prediction precision.

We have tried to solve source detection problem using graph convolutional net-
works and the result is promising, we could achieve higher f1 score in experiment

conducted on several network datasets compared with our baseline(LPSI).

2 Algorithm

We introduce LPSI and GCN-based method in this section. In general GCN-
based method utilizes result obtained by traditional LPSI and performs better.

2.1 LPSI

To our knowledge, only a few studies have been carried out for source iden-
tification without the requirement of knowing the underlying information propa-
gation model. LPSI is the first attempt on this problem, which propagates integer
labels in network and predicts the rumor sources based on the convergent node
labels.

() wninfected nodes Observed infected graph Labels on graph (step 0)

. infected nodes

ion .

pagat

Pro
i

Labels at iteration step 10

—————————————————

Source |\

{Node 1) | 4 04

0.8
08
1

Source [

Mode 11}{ .27

Figure 1: an illustration of LPSI

Algorithm 1 Label Propagation based Source Identification

Input: The infected network G = (V,E), parameter ¢, the initial infection state
vector Y.
Form the weight matrix W defined by W;; = 1 if there exists an edge connecting
nodes i and j
Construct the matrix S = D" :WD~2, where Dis a diagonal matrix with its (i,i)
element equal to the sum of the i-th row of W.
=0« Y
while I'* does not converge do
for each node i do
Mt =ay
end for
t=t+1
end while
ANS = {}
for eachnodei do

JJEN(L

if I'; > all i’s neigbours’ I" value then
ANS = ANS U {i}
end if
end for
return ANS

As an example, Fig. 1 depicts a partially infected network, in which a sub-
network has been infected by a stochastic process starting from two sources (nodes
1 and 11). The red nodes are infected nodes and the white ones are uninfected. At
tirst, we assign positive labels (+1) to infected ones, and negative labels (-1) to un-
infected ones. After that, their label values are propagated and updated iteratively,
and the propagation result at iteration step 10 is shown at the bottom right of Fig.
1. Finally, we get the convergence result, where nodes 1 and 11 are two local max-
imum points. As a result, we consider these two nodes as infection sources. the

iteration formulation and convergent state are defined as follows

I =a Y ST+ (1—a)Y; (1)
J:JEN(7)
I*=(1-a)(l—-aS)™ 'Y ()

a € (0, 1) is the parameter used to control the influence that node i gets from its
neighbors. N(i) represents the set of neighbors of node i. I'! is the infection state of
node i at iteration t . S;; is the (i, j)-th element of the regularized Laplace matrix S
of G. 'Y is the given infection state of node i.

2.2 Graph Convolutional Network

Graph Convolutional Network is an extension of CNN on graph data, which
generates local permutation-invariant aggregation on the neighborhood of a node
in a graph such that the features of a graph can be efficiently captured.

n) (=)) (&
TA P . < \ N
Graph 1 [(%) > | (ys
Regularizati L N —. |/ -
< IVD::' ;;;m ‘4‘, \\\5' Vi \“ ¥s
N, Modify Jboooo
/.. ! N — —
(0 X [y e
! A~ A
/R . [(x®) Xi v [‘_a:SJ/ }’1
| —A) | = A)
(:"&““\./\ \:’xtia }_44f/‘ \\ V’S]‘: f
(a) GCN (b) Modified GCN

Figure 2: Structure of traditional GCN and modified GCN layer

As GCN is originally designed for semi-supervised learning, although it is able
to effectively capture and properly express the features of a graph, it cannot be

directly applied for the supervised learning based source detection problem. We

3

modify GCN and apply it in our graph feature capturing task. The details can be
found in Fig 2.

In the modified GCN, each node receives a component of xi. When all the
training data is received by GCN and it reaches convergence, the model can be

used to predict rumor sources for test samples.

2.2.1 Input Generation

The existing work such as LPSI treats the original infection state Y as labels
of nodes. However, in our point of view, the elements of Y are simply integers,
which is not informative enough to express the complicated connection structure
between nodes. Therefore, we propose an input generation algorithm to expand
the integer label into a multi-dimensional vector for each node. And details could

be found at algorithm 2.

Algorithm 2 Input Generation
Input: The infected network G = (V,EY), parameter o, Y = {Y7,..., Y],
Form the weight matrix W defined by W;; = 1 if there exists an edge connecting

nodes i and j
Construct the matrix S = D2 D~ 2, where D is a diagonal matrix with its (i,i)
element equal to the sum of the i-th row of W.
V=Y, Vy=Y
fori < len(Y) do
if Y; = —1 then
V3 =0
else
Vi =0
end if
end for
di=Y
do = (1—a)(I —aS)" 'Y
ds = (1 —a)(I —aS)™ 'V,
dy=(1—a)(I —aS)™'V,
return concatenate(d;, ds, d3, dy)

To be more specific, d1 is the infection state value which is equal to Y where
the infected nodes are set to 1s and the uninfected ones are set to -1s. d2 is the
output of LPSI with Y as input, where the value of a node is updated based on its
neighbors’ values. d3 and d4 are the outputs of LPSI with modified inputs. In fact,

4

d3 and d4 are generated respectively by changing all -1 to 0 in Y and changing all
1 to 0 in Y. In LPSI, the propagation of infected nodes is counteracted by that of
uninfected ones. So by changing all -1 to 0, d3 is contains more information about
the infected nodes. And by changing all 1 to 0, d4 keeps more information about
the uninfected nodes.

2.2.2 Architecture

The architecture of our model GCN is shown in Fig. 3. First, the Laplacian
matrix is generated from G. Next, a set of training samples are generated by Algo-
rithm 1. Then, each training sample x flows via multiple GCN layers and a single
dense layer. The active functions are ReLU for GCN layer and Sigmoid for dense

layer, respectively. Finally, the prediction output of GCN is y.

s ? P batch
. o y L .
0L L s e Input Generation
LY ® - L] ® p
o.-.. ¥ o Agolrithm
-
« o -
L J ¢ L]
. »

Laplacian matrix

—b(GCN Layer] w
N-layers
4{ GCN Layer] J

(Dense Layer)
I

(Sigmoid)

®

Figure 3: Architecture of GCN

3 Experiments

3.1 Datasets

In our experiments, we perform LPSI and GCN methods on three datasets:

1. Karate is a social network of friendships between 34 members of a karate
club at an US university in the 1970s. It’s a classic dataset that is widely used

in many work for fast verification.

2. Dolphin is an undirected social network of frequent associations between 62

dolphins in a community living off Doubtful Sound, New Zealand.

3. Jazz is a network of Jazz bands performing from 1912 to 1940.

3.2 Generation of samples

We generate partly infected networks based on specific network structures pro-
duced by datasets using two Mathematical models of epidemic diseases SI and SIR,
which are also widely used in simulating the spreading of rumors.

SI model divides the crowd into two categories: Susceptible and In fectious
and spreads rumors with a given infectious rate 3. While SIR model also take into
consideration that there’s also a possibility of the Infectious” recovering and thus
adds a new category Recovered.

The generation of training samples can be described in the following steps:

1. Load network structure based on a given dataset.

2. Randomly choose 2 or 3 or 5 nodes as rumor sources.

3. Generate partly infected network G with SI or SIR model.
4. Generate input for GCN with Input Generation Algorithm.

The generation of testing samples is similar to that of training samples, except
that the number of rumor sources in step 2 is decided manually.

In our experiments, we sample 10000 infection sates independently for training
GCN and 2000 for testing LPSI or GCN.

3.3 Result

Figure 4 shows that:

1. GCN based methods outperforms LPSI by 20% to 80% on all of the three

datasets, and especially when K (ground truth rumor sources) is smaller.
2. When K is larger, both of the two methods performs better.

3. Though achieving great improvements when there are more nodes in the
dataset (198 in Jazz), F1-score of predictions made by GCN becomes lower.

. core F1 score
F1 score KARATE F1 score DOLPHIN IAZZ
04 0.25 022 01 008
0a i 027 02 o1 %8 008 0.06
= 023 015 B 0.06
02 015 017 ? 011 01
008 0l 006 0.04
01 0.05 002 001

003 0.03

LPSI mGCN LPSI mGCN LPSI mGCN

(a) Karate (b) Dolphin (c) Jazz

Figure 4: Performance of GCN on different datasets

3.4 Hyper-parameter Exploration

Lastly, the impact of some important parameters in GCNSI are examined and
the validation results are shown in Fig. 5. Four parameters are chosen to be val-
idated, i.e., number of learning rate, GCN layers, hidden unit size, dropout rate.
Since the validation of all datasets is massive, we only demonstrate the validation
on Karate dataset as a case study. For each parameter, both of SI and SIR models are
chosen as the underlying propagation models. Actually, after the cross-validation,
we finally obtain the best settings of these four parameters. Therefore, when we
adjust a parameter, the other three are fixed with the best settings, and the impact
of each parameter is introduced separately in the rest of this section.

As we could conclude from Fig 5, a relatively smaller learning rate yields a
better result, since a smaller learning rate makes a more stable optimizing process.
And in general larger hidden size and smaller dropout probability lead to better
performance. While things become more tricky when we try to adjust number of
GCN layers, maybe for a small social network like karate, more GCN layers make
it more susceptible to overfitting problems.

03 0.272

- —e—5| & SIR 027
0.25
0.268
o 02 0.266
5 § 0264
@A 015 2 0.262
b 01 T 026
. 0.258
0.05 0.256
0.254
0 0.252
0001 0003 0005 0007 0009 1 2 3 4 5 B 7 8
Learning rate GCN layer
(a) learning rate (b) number of layers
03 03
025 025 —SI &SR
o 02 o 02
Q Q ..
8 015 % 015
& 0.1 o 01
0.05 0.05
0 0
32 64 128 256 512 1024 01 02 02 04 05 06 07
Hidden unit size Dropout rate
(c) hidden unit size (d) dropout

Figure 5: impact of hyper-parameters

4 Visualization

We also design a website to visualize and help understand the prediction pro-
cedure of GCN based on HTML and Flask.

The network demonstrated on the website is generated based on Karate (34
nodes) where at least 60% of the nodes are infected. There are different kind of

nodes in Figure 5:
1. Blue nodes represent the infected ones.
2. Green nodes represent the uninfected ones.
3. Larger nodes represent the ground truth rumor sources.

4. Red nodes represent the rumor sources predicted by GCN.

(a) Before prediction (b) After prediction

Figure 6: Visualization of the network

5 Conclusion

As source detection is an important task in defeating rumors in social network,
in this project, we study the multiple rumor source detection (MRSD) problem. To
solve MRSD with high precision, we propose a deep learning based model GCN
to locate multiple rumor sources without prior knowledge of underlying propa-
gation model. Furthermore, an input generation algorithm is developed to extend
the integer label into vector for node representation. Then, we conduct experiment
by comparing our model with the stateof-the-art baselines on three real-world net-
works, and the results demonstrate the effectiveness of GCN where it outperforms
the state-of-the-art method. In the future, we plan to apply GCN into other ru-
mor defeating problems such as content-based rumor identification etc. Due to the
complex features of rumor content (including text features and users’ behaviors),
we believe it is of great potential for applying GCN.

6 Division of Work

6.1

1.

2.

6.2

Report
Background and Algorithm: Zheng Longjie 517030910360.

Experiments and Visualization: Liu Yaxin 517030910307

Project

. Together: Realization of LPSI part and construction of the websites.

Zheng Longjie 517030910360: Realization and modification of the GCN’s
structure in PyTorch.

Liu Yaxin 517030910307: Generation of the training and testing samples and
the training process of GCN on different datasets.

10

	Background
	Algorithm
	LPSI
	Graph Convolutional Network
	Input Generation
	Architecture

	Experiments
	Datasets
	Generation of samples
	Result
	Hyper-parameter Exploration

	Visualization
	Conclusion
	Division of Work
	Report
	Project

