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ABSTRACT
The coronavirus disease has influenced the life of many people

around the world since the beginning of 2020. In this paper,we

modify the traditional SEIR model, and propose two new models

named SEIR Under Quarantine and SEIR Under Migration to

help analyze and predict the spread of COVID-19 in China. We

provide several possible ways to derive analytical solution, and

then use Euler method to simulate. The parameters are set based on

the statistics of Wuhan, and our model fits the real statistics well.

We further do experiments on one or more cities to show how the

change of parameters will influence the spread. Our new models

and analysis on them can serve as a basis for future disease analysis

and decision making.

KEYWORDS
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1 INTRODUCTION
1.1 Background
Coronavirus disease 2019 (COVID-19) is an infectious disease caused

by severe acute respiratory syndrome coronavirus (SARS-CoV-2).

The first wave of outbreak happened in China, especially Wuhan,

Hubei Province in the first quarter of 2020. By June 2020, it is still

widely-spread in many places around the world, although it has

been controlled largely in China.

Figure 1: Spread of COVID-19 around the world

1.2 Previous Work
To model the spread of the diseases, many problems arising in

epidemiology may be described, in a first formulation, by means of

differential equations. This means that the models are constructed

by averaging some population and keeping only the time variable.

To the best of our knowledge, the first mathematical model of

epidemiology was formulated and solved by Daniel Bernoulli in

1760. Since the time of Kermack and McKendrick[1], the study

of mathematical epidemiology has grown rapidly, with a large

variety of models having been formulated and applied to infectious

diseases[2–4]. Among them, the most popular one is SEIR model.

Consider a population which remains constant and which is

divide into four classes: the susceptibles, denoted by S, who can

catch the disease; the exposed, denoted by E, who are infected but

still under the incubation period (no typical symptoms) and can

transmit the disease to the suspectibles; the infectives, denoted by

I, who are infected, have typical symptoms and can transmit the

disease to the susceptibles, and the recovered, denoted by R, who

had the disease and recovered and have developed immunity. Since

from the modeling perspective only the overall state of a person

with respect to the disease is relevant, the progress of individuals

is schematically described by

𝑆 → 𝐸 → 𝐼 → 𝑅

1.3 Our Contribution
Our main contribution can be mainly summarized as follows:

• We modified the original SEIR model and proposed a new

model named. SEIR under quarantine. It takes the quar-
antine measures that the government into consideration.

• We further consider the influence of inter-city mobility, and

proposed another model named SEIR under migration.
• We propose several possible ways to find analytical solution,

and use Euler Method to do simulation in our experiments.

• The simulation result of our models is with the real statistics

in Wuhan, which displays the usability of our model. We

also test on several toy examples to show the need to take

measures early and decisively.

2 SEIR UNDER QUARANTINE
2.1 Model Description
Classical SEIR model divide people into several categories as: S

(susceptible), E (exposed), I (infected), R (recovered). This model

assume that people who carry virus (E and I) have the power to

infect S. Thus S (susceptible) will transfer to incubation period

and become E. After the incubation period, E (exposed) get sick

and become I. When I(infected) people recover, they will have the

antibodies, i.e., R will not be infected again.

Considering the effective measure of quarantine by Chinese

government, we newly introduce three states: SQ (susceptible un-

der quarantine), EQ (exposed under quarantine) and IQ (infected

under quarantine). Note that the infected under quarantine will



be transferred to hospital immediately, so we replace IQ with H

(hospitalized patients) to denote these people.

Thus our revised SEIR model, namely SEIR Under Quarantine
are proposed. Before illustrating the transition relationship, we first

introduce some related variables.

• 𝛽 represents the infection probability. It measures the ability

of disease to spread.
1

• 𝜎 represents the probability that E transmit to I.

• `𝐼 represents the death rate of I, `𝐻 represents the death

rate of H.

• 𝛾𝐼 represents the recover rate of I, 𝛾𝐻 represents the recover

the rate of H.

• 𝑞𝑆 represents the portion of quarantine people from S, 𝑞𝐸
represents the portion of quarantine people from E.

• _ represents the rate of release from quarantine after 14 days’

watching. So, usually we take _ = 1

14
.

• 𝛿𝐸 represents the rate that EQ get sick thus sent to hospital ,

𝛿𝐼 represents the portion that I (infected) go to hospital.

Thus their transition relationship are presented in Fig 2
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Figure 2: SEIR Under Quarantine

2.2 Model Analysis
Based on the flow in transition graph, we can construct the differ-

ential equations to analyze the relationship between these states.

Definition 1 (Contact Rate). It is defined as the total number
of contacts per unit time of one person. We denote it as c.

According on the flow in Fig 2, the changing rate of S, namely

𝑑𝑆
𝑑𝑡

should be minus infection rate plus release rate from quarantine

minus quarantine rate.

A person who carries the virus meets a healthy people with

the probability
𝑆
𝑁
. And he infects the healthy person with the

probability 𝛽 . If he meets 𝑐 persons a day, then the infection rate

will be
𝑐 ·𝑆
𝑁

(𝛽𝐸𝐸 + 𝛽𝐼 𝐼 ).
𝑑𝑆

𝑑𝑡
= −𝑐 · 𝑆

𝑁
(𝛽𝐸𝐸 + 𝛽𝐼 𝐼 ) + _𝑆𝑄 − 𝑞𝑆𝑆 (1)

According on the flow in Fig 2, the changing rate of E, namely
𝑑𝐸
𝑑𝑡

should be infection rate minus quarantine rate minus morbidity

rate.

𝑑𝐸

𝑑𝑡
=
𝑐 · 𝑆
𝑁

(𝛽𝐸𝐸 + 𝛽𝐼 𝐼 ) − (𝜎 + 𝑞𝐸 )𝐸 (2)

1
Specifically, 𝛽𝐸 and 𝛽𝐼 represents the infection probability of E (exposed) and I

(infected) respectively.

According on the flow in Fig 2, the changing rate of SQ, namely

𝑑𝑆𝑄

𝑑𝑡
should be quarantine rate from S minus release rate from

quarantine.

𝑑𝑆𝑄

𝑑𝑡
= 𝑞𝑆𝑆 − _𝑆𝑄 (3)

According on the flow in Fig 2, the changing rate of EQ, namely

𝑑𝐸𝑄

𝑑𝑡
should be quarantine rate from E minus hospitalized rate.

𝑑𝐸𝑄

𝑑𝑡
= 𝑞𝐸𝐸 − 𝛿𝑞𝐸𝑄 (4)

According on the flow in Fig 2, the changing rate of I, namely

𝑑𝐼
𝑑𝑡

should be morbidity rate of E minus death rate minus recovered

rate minus hospitalized rate.

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − (𝛿𝐼 + `𝐼 + 𝛾𝐼 )𝐼 (5)

According on the flow in Fig 2, the changing rate of H, namely

𝑑𝐻
𝑑𝑡

should be hospitalized rate of E and I minus death rate minus

recovered rate.

𝑑𝐻

𝑑𝑡
= 𝛿𝑞𝐸𝑄 + 𝛿𝐼 𝐼 − (𝛾𝐻 + `𝐻 )𝐻 (6)

According on the flow in Fig 2, the changing rate of R, namely

𝑑𝑅
𝑑𝑡

should be recovered rate from H and I.

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 𝐼 + 𝛾𝐻𝐻 (7)

3 SEIR UNDER MIGRATION
3.1 Model Description
In the above analysis, the city is regarded as an isolated island,

and we simulate and analyze our model based on the assumption.

Nonetheless, things are not that simple. There are actually migra-

tion between different cities, and the migration can also influence

the spreading of COVID-19.

When considering themigration between different regions, SEIR
Under Quarantine may not be able to deal with this situation.

Thus we need a little improvement to enhance the robustness of

our model.

Under the restriction of Chinese government, people move from

regions to regions need to take temperature tests. If someone’s

temperature is rather high, he would be sent to hospital. With this

regulation, there are several cases should be considered (when a

person moves from A to B):

• S in A→ S in B.

• E in A→ E in B.

• I in A→ H in B.

• R in A→ R in B.

Thus we propose a new model named SEIR Under Migration.
In this model, there areM regions, denoted as 1, 2, ..., M. In each

region 𝑗 , we have these seven states: 𝑆 𝑗 , 𝐸 𝑗 , 𝑆𝑄 𝑗 , 𝐸𝑄 𝑗 , 𝐼 𝑗 ,𝐻 𝑗 ,𝑅 𝑗 . And

we use some variables to describe the migration between regions.

• We use 𝐻𝑖 𝑗 to denote the migration from region 𝑖 to region

𝑗 .

• 𝑆𝑖 𝑗 represents the number of susceptible people from region

𝑖 to region 𝑗 .
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• 𝐸𝑖 𝑗 , 𝐼𝑖 𝑗 and 𝑅𝑖 𝑗 are defined similarly.

Note that there are some relations between them, i.e., 𝐻𝑖 𝑗 =

𝑆𝑖 𝑗 + 𝐸𝑖 𝑗 + 𝐼𝑖 𝑗 + 𝑅𝑖 𝑗 . And we assume that that 𝑆𝑖 𝑗 = 𝐻𝑖 𝑗 × 𝑆𝑖
𝑁𝑖

,

𝐸𝑖 𝑗 = 𝐻𝑖 𝑗 × 𝐸𝑖
𝑁𝑖

, 𝐼𝑖 𝑗 = 𝐻𝑖 𝑗 × 𝐼𝑖
𝑁𝑖

and 𝑅𝑖 𝑗 = 𝐻𝑖 𝑗 × 𝑅𝑖
𝑁𝑖

.

3.2 Model Analysis
With the migration analysis, formula are derived as follows: we

only need to add the migration based on the above cases.

𝑑𝑆 𝑗

𝑑𝑡
= −

𝑐 · 𝑆 𝑗
𝑁 𝑗

(𝛽𝐸𝐸 𝑗 +𝛽𝐼 𝐼 𝑗 ) +_𝑆𝑄 𝑗 −𝑞𝑆𝑆 𝑗 +
∑
𝑚≠𝑗

𝑆𝑚𝑗 −
∑
𝑚≠𝑗

𝑆 𝑗𝑚 (8)

𝑑𝐸 𝑗

𝑑𝑡
=
𝑐 · 𝑆 𝑗
𝑁 𝑗

(𝛽𝐸𝐸 𝑗 + 𝛽𝐼 𝐼 𝑗 ) − (𝜎 +𝑞𝐸 )𝐸 𝑗 +
∑
𝑚≠𝑗

𝐸𝑚𝑗 −
∑
𝑚≠𝑗

𝐸 𝑗𝑚 (9)

𝑑𝑆𝑄 𝑗

𝑑𝑡
= 𝑞𝑆𝑆 𝑗 − _𝑆𝑄 𝑗 (10)

𝑑𝐸𝑄 𝑗

𝑑𝑡
= 𝑞𝐸𝐸 − 𝛿𝑞𝐸𝑄 𝑗 (11)

𝑑𝐼 𝑗

𝑑𝑡
= 𝜎𝐸 𝑗 − (𝛿𝐼 + `𝐼 + 𝛾𝐼 )𝐼 𝑗 −

∑
𝑚≠𝑗

𝐼 𝑗𝑚 (12)

𝑑𝐻 𝑗

𝑑𝑡
= 𝛿𝑞𝐸𝑄 𝑗 + 𝛿𝐼 𝐼 𝑗 − (𝛾𝐻 + `𝐻 )𝐻 𝑗 +

∑
𝑚≠𝑗

𝐼𝑚𝑗 (13)

𝑑𝑅 𝑗

𝑑𝑡
= 𝛾𝐼 𝐼 𝑗 + 𝛾𝐻𝐻 𝑗 +

∑
𝑚≠𝑗

𝑅𝑚𝑗 −
∑
𝑚≠𝑗

𝑅 𝑗𝑚 (14)

4 SOLUTION APPROACH
In this section, we propose some possible approaches to solve the

above differential equations.

4.1 Homotopy Analysis Method
A powerful, easy-to-use analytic tool for nonlinear problems in

general, namely the homotopy analysis method, is further improved

and systematically described through a typical nonlinear problem

in [5]. Two rules, the rule of solution expression and the rule of

coefficient ergodicity, are proposed, which play important roles in

the frame of the homotopy analysis method and simplify its appli-

cations in science and engineering. An explicit analytic solution

is given for the first time, with recursive formulas for coefficients.

This analytic solution agrees well with numerical results and can be

regarded as a definition of the solution of the considered nonlinear

problem. And the authors apply this method in SIS and SIR model

in [6] which could also be generalized in our model.

4.2 Markov Chain
A Markov chain is a mathematical system that experiences transi-

tions from one state to another according to certain probabilistic

rules. The defining characteristic of a Markov chain is that no mat-

ter how the process arrived at its present state, the possible future

states are fixed. In other words, the probability of transitioning to

any particular state is dependent solely on the current state and

time elapsed. The state space, or set of all possible states, can be

anything: letters, numbers, weather conditions, baseball scores, or

stock performances.

In our model, transitions between different states are displayed

in Fig 2, we can apply the idea of Markov Chain to explore the

relations of these states.

4.3 Euler Method
In mathematics and computational science, the Euler method (also

called forward Euler method) is a first-order numerical procedure

for solving ordinary differential equations (ODEs) with a given

initial value. It is the most basic explicit method for numerical

integration of ordinary differential equations and is the simplest

Runge–Kutta method. The Euler method is a first-order method,

which means that the local error (error per step) is proportional to

the square of the step size, and the global error (error at a given time)

is proportional to the step size. The Euler method often serves as the

basis to construct more complex methods, e.g., predictor–corrector

method.

For example, if we discretize the time and use 𝑆 (𝑛) to denote the

susceptibles in time slot 𝑛, then we have:

𝑆 (𝑛+1) = 𝑆 (𝑛) − 𝑐 · 𝑆 (𝑛)

𝑁 (𝑛) (𝛽𝐸𝐸 (𝑛) + 𝛽𝐼 𝐼
(𝑛) ) + _𝑆𝑄 (𝑛) −𝑞𝑆𝑆

(𝑛)
(15)

It is used to simulate the results.

5 EXPERIMENT
WeuseEulerMethod to do simulation in our experiments, because

other methods are rather difficult to be applied.

5.1 SEIR Baseline Model for WUHAN
In this subsection, we try to apply the original SEIR baseline model

to Wuhan. Information in both demography and epidemiology is

used to help determine our parameters. Specifically, The initial

value for equations are set as follows.

• 𝑆(susceptible): set to 11800000. According to statistics about

population in Wuhan

• 𝐸(exposed): set to 2000. Approximately the number of in-

fected people between January 23 and January 29

• 𝐼 (infected): set to 1000. Estimated value

• 𝑅(recovered): set to 23. According to official statistics on Jan

23

The parameters of our model are chosen mainly based on previous

studies, while the exact values are also adjusted to fit our model

better.

• 𝛽𝐸 : set to 2.41 ∗ 10−8.
• 𝛽𝐼 : set to 2.41 ∗ 10−8. Here we assume that 𝛽𝐸 = 𝛽𝐼
• 𝜎 : set to 1/7. We expect an exposed person to take 7 days to

get infected

• `𝐻 : set to 2.7 ∗ 10−4. Estimated according to official statistics

• 𝛾𝐻 : set to 0.11. We expect a patient to take 9 days to recover

With the above settings, we try to use the original SEIR model

to fit the epidemic statistics from January 23 in Wuhan. The result

are shown in figure 3.

We use our model to approximate the transmission of COVID-

19 in Wuhan since January 23, when the central government of

China imposed a lockdown there. From figure 3, we can see that
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Figure 3: Simulated SEIR model in Wuhan

the original SEIR model fit the situation in Wuhan well in the first

15 days. However, the simulated number of infected people is much

more than that in reality as time goes by.

We are not able to find any faults in the SEIR model despite

scrutinization. The inference we make is that the model is not so

suitable for Wuhan, and we propose our revised SEIR model for

Wuhan later.

5.2 SEIR Under Quarantine for WUHAN
The impact of quarantine is considered in our revised model. Our

new model inherits the original one, and it has several more param-

eters related to quarantined people. The new parameters are set as

described below.

• _: set to 1

14
. We expect a healthy people to be lifted from

quarantine after 14 days.

• 𝑞𝑆 : set to 1.8 ∗ 10−7. It is the portion of susceptible people

who are exposed

• 𝑞𝐸 : set to 0.35 It is the portion of exposed people who are

quarantines

• 𝐻 : set to 485. According to official statistics on Jan 23

• 𝛿𝑞 : set to 0.13. Similar to 𝜎 (0.14)

• 𝛿𝐼 : 0.33. We expect it to take 3 days for an infected people to

get hospitalized

• 𝛾𝐻 : 0.11. We expect a patient to recover after 9 days

• 𝛾𝐼 : 0.11. Assume 𝛾𝐼 = 𝛾𝐻
• `𝐻 : 2.7 ∗ 10−4. Assume `𝐻 = `𝐼

We try to fit the real statistics with the above parameters, but we

find that the simulated value of infected people is still too much.

We further adjust our model to deal with the problem.We assume

that they both increase as time goes by, benefiting from the strict

measures that the government takes. To be more exact, a shifted

version of sigmoid function is used to approximate the change of

𝛿𝐼 and 𝑞𝐸 .

Note that the start date is set as January 23 in this experiment,

because it is the time when the whole city, Wuhan, was blockaded.

Consequently, the city can be viewed as an isolated node from then

on.

As shown in figure 4, our model fits well with the real statistics

most of the times. However, a huge gap appears on approximately

the 23rd day. Tracking back the statistics, we get to know that
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Figure 4: SEIR quarantined model simulation without any
jumps from Jan 23

the jump of confirmed cases in Wuhan is caused by a change in

statistical caliber. To better simulate the real case, we add a jump

to the simulated curve on the exact date, and arrive at Figure 5.
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Figure 5: SEIR quarantined model simulation with a jump
from Jan 23

Apart from testing more people and making more patients hos-

pitalized, The Wuhan government also encourages people to stay

at home most of the time by propaganda, which can lead to lower

contact rate. In the next experiment, we try to analyze how the

change of contact rate can make an impact on the numebr of in-

fected people. The original contact rate in our model is 2. Besides

the original setting, We set the parameter to 1.8 and 2.2 as well, and

the curves are shown in figure 6

5.3 SEIR Under Migration
In this subsection, we conduct several experiments to illustrate

the influence, and we further investigate into how the reaction of

government will makes a difference.

The best way to examine our model of migration is to use real

statistics to test. However, it is not so easy to finish the task in

reality. The first problem we face is that it is difficult to design

good parameters in our model for each city. Even if we do set the

parameters well, doing simulation on them will probably lead to

too much time to solve all the equations.
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Figure 6: SEIR quarantined model simulation with different
contact rates

Considering these facts, we decide to test our model only on

several toy examples. As we have learned proper parameters for

the city Wuhan, we do our simulation on several cities, and each

one has the same parameters as Wuhan. We test on these cities by

simulation.

The first topic is the influence of reducing inter-city mobility.

Suppose there are four cities A, B, C, D, and each one has the same

property as Wuhan. There are different percent of people moving

from A to B, C, D every day, and the Figure 7 shows the result.

The peak appears almost simultaneously in the three cities, and

the peak value is approximately proportional to the transmission

rate. It enlightens us that reducing inter-city mobility can greatly

flatten the curve, but have little influence on when the summit

appears.
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Figure 7: SEIR quarantined model simulation with different
transmission rate

Next, we want to find out how the reaction time of the govern-

ment will influence the curve. As we mentioned before, we use a

shifted version of sigmoid function to approximate the change of

𝛿𝐼 and 𝑞𝐸 . In the problem setting, the shift can be thought to be

linear to the reaction time.
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Figure 8: SEIR quarantined model simulation with different
reaction time

The reaction time will influence both where the peak appears

and what the peak value is. The shorter the reaction time, the earlier

the peak and the less the peak value. It illustrates that taking actions

early and decisively is important to the control of spreading.

6 CONCLUSION
Coronavirus disease 2019 (COVID-19) is an infectious disease which

is now widely spread around the world. Traditional epidemiology

models such as SEIR can not simulate the spread of the disease in

China well ,and we introduce two new models, SEIR Under Quar-
antine and SEIR Under Migration, to solve the problem. The

two considers the influence of quarantine and migration separately.

After providing several possible ways to solve them theoretically,

we do numerical simulation with Euler method. With proper pa-

rameters, the simulation result of our model is very similar to the

real statistics. We also test them on some toy examples to show

the need to take measures early and decisively. Our new models

provides us with a new prospective to the spread of COVID-19, and

they can be modified to analyze the spread of other diseases.
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Under Migration model; further derive a series of differen-

tial equations and analyze some possible way to solve them;

devise several experiments to test our hypothesis.

• Xiaoyi Bao:write codes to do simulation onmodel SEIR, SEIR
Under Quarantine, SEIR Under Migration with numer-

ical method;use a web crawler to grab statistics from the

internet; devise several experiments to test our hypothesis.

• Wenze Ma: Subsection 2, 3, 4

• Xiaoyi Bao: Subsection 1, 5, 6
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