
SHANGHAI JIAO TONG UNIVERSITY

IEEE CLASS
Mobile Network

The Report of Final Project

Author:
Xianyu Chen
Chenzhengyi Liu
Nianzu Yang
Ziheng Zhao

Student Number:
517030910285
517030910037
517030910301
517030910304

June 21, 2020

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

Since this a team work and we have actually done a lot of things in this project, this
report maybe a little bit long although we have cut many parts such as background
knowledge for recommendation system, some techniques and more details about our
experiments(we provide all the code along with partial training records).
Thanks for your reading.

1

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

Contents
1 Introduction 3

2 Preliminary 5
2.1 Analysis . 5
2.2 Problem Formulation . 5
2.3 Dataset . 6

3 Back-End 6
3.1 Recommendation System Based on User Interests 6

3.1.1 Model . 6
3.1.2 Training . 8
3.1.3 Testing . 9

3.2 Feature Learning . 10
3.2.1 Motivation . 10
3.2.2 Algorithm . 10
3.2.3 Experiments . 12

4 Front-End 13
4.1 Design . 13
4.2 Implementation . 15

4.2.1 Index() . 15
4.2.2 Registration() . 15
4.2.3 Search() & Do_collect() . 16
4.2.4 Favorite() . 16
4.2.5 Recommend() . 16

4.3 Data Visualization . 18
4.4 Demonstration . 18

5 Conclusion 20

6 Acknowledgement 21

2

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

1 Introduction

In an Internet era, the connections with academia are increasingly intense and we
have witnessed more and more impressive papers and outstanding scholars spring-
ing up. For a student interested yet unfamiliar in a specific research topic, however,
it’s quite annoying to find a suitable mentor in this area since the numerous pa-
pers and scholars make him hard to get a clue. For example, the mentor selection
system we used in IEEE class is quite simple and crude, we can only see the basic
information of a professor and connect them for more details, not to mention there
isn’t any recommendation or tips given by the system. This dilemma calls for a
effective way to understand the student’s interests and that of potential mentors
to get them matched efficiently, which could save them much time. This problem
resembles a typical recommendation problems greatly, where we need to mine the
perference of users and feature of items to get them macthed. Nevertheless, to our
knowledge, there isn’t any work before trying to build a recommendation system in
this scenario(probably because the little commercial benefit it has), which leaves it
a open literature. To this end, we focus on building a academic recommendation
system in this project specifically for mentor recommendation, targetting at those
self-motivated students searching for a suitable mentor matching their interests.
The main work and contribution of this project is as following:

• We first analyze the data we have and student’s needs in real scenario(Section
2).

• We then formulate this problem and conceive a feasible framework to solve
it and apply the solution. Specifically, we devise a deep learning method for
learning and making recommendation based on the student’s historic collection
of papers and scholars(Section 3.1). And extensive experiments have shown
the advancement of this approach(Section 3.1.3).

• To further elevate it’s performance, we innovatively separate the end-to-end
recommendation model and use a pretraining method to learn the represen-
tations of scholars and papers. The recommendation model is redesigned to
focus on recommendation and thus gaining an significant improvement. Based
on our survey on Recommendation System, this trick is advanced and inno-
vative(Section 3.2). Experiments on the comparison with previous approach
show the benefits of such improvement(Section 3.2.3).

• We also elevate our prior experience to make the recommendation more infor-
mative, which is reflected by the design of our mentor candidates pool.(Section
4.2.5)

• Furthermore, we consider the situation when student are newcomers and come

3

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

up with a cold-boost recommendation to fill this gap before we know more
about her/his interest(Section 4.3).

• Finaly, we design a website to collect the user data and demonstrate recom-
mendation results in a visual way(Section 4).

The cooperation details and duties of this project is as following:

• Zhao Ziheng 517030910304 : Responsible for building the backend recommen-
dation system based on user historic data, and writing Section 1, Section 2,
Section 3.1 and Section 5 in this report.

• Chen Xianyu 517030910285 : Responsible for pretraining the embedding for
scholars and papers, and writing Section 3.2 in this report.

• Liu Chen Zhengyi 517030910285 : Responsible for designing and implementing
the fornt-end website, and writing Section 4.1 and Section 4.2 in this report.

• Yang Nianzu 517030910304 : Responsible for building the cold boot recom-
mendation and data visualization, and writing Section 4.3, Section 4.4 and
Section 6 in this report.

Figure 1: Our Framework

4

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

2 Preliminary

2.1 Analysis

When we try to recommend based on user’s historic data, we can formulate all
the entities in this problem as two types: scholars and papers. Thereby, they are
corresponding to the classical ”user-item” relationship in recommendation system.
From this perspective, we might as well design a mechanisim to learn/mine the
feature of each paper and scholar, which are the foundation for us to understanding
the user and mentor’s preference. We can then represent the user’s interest based on
the feature of the papers and scholars, which is mainly to aggregate their features.
Now, given the interests of a student and featue of a mentor, we can score on the
matching degree between them two. Clearly, the critical three steps above can all be
implemented with deep neural networks: feature learning, feature aggregation and
score function. This is quite rational since countless works before have proved the
power of DNN in such tasks.

The only problem existing now is, we don’t have user data to train the network.
We address this by treat each scholar(with known mentor) as a user. Accordingly,
his published paper can be seen as the favorite ones and cooperated authors as
favorite scholars.

2.2 Problem Formulation

Assume we have scholar set A and paper set P in this problem. Given the favorite
papers pu ∈ Rnp , pui ∈ P and favorite authors au ∈ Rna , auj ∈ A of user u, our goal
is to find the optimal mentor w∗ ∈ wu for u. Here, wu ∈ Rnw is the candidate
mentors for u and the optimal means w∗ = argmaxw(r(a

u,pu, w)). r(·) is the
recommendation model that predict a score for given input.

We summerize our notations in the following table:

5

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

Table 1: Notation
Notation Description
A,P scholar and paper set
au,pu the authors and papers sequence of a user’s favorite list
Ae

u,P
e
u the embedding matrix of au,pu

wu candidate mentors
W e

u the embedding matrix of wu

zu the interest representation of u
r(·) our recommendation model

2.3 Dataset

We derive our dataset from Acemap. The dataset statistics is as following table.

Table 2: Dataset Statistics
Term Statistics

Number of scholars 59941
Number of papers 74780

Number of student-mentor relationships 117375
Average publications per scholar 4.6

Average cooperated scholars per scholar 21

3 Back-End

3.1 Recommendation System Based on User Interests

3.1.1 Model

The three steps forementioned in our algorithmn are : feature learning, feature ag-
gregation and score function. They are implemented respectively by : an Embedding
Layer, two Convolutional Layer and a Fully-connected Layer, matrix multiplication.
And the critical component is the design of Convolutional Layer to learn
user interests form favorite papers and scholars.

We first utilize 2 Embedding Layers to generate and update the representation
of scholars and papers, i.e. Ae

u ∈ Rna×d and P e
u ∈ Rnp×d. The input of them are

6

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

Figure 2: Our Recommendation Model

au,pu, respectively. After that, two symmetric convolutional neural networks will
extract higher level information from Ae

u,P
e
u simultaneously and a fully-connected

layer will aggregate them into a vector describing the interests of an user, zu.

For P e
u the CNN has nh horizontal filters F̂p ∈ Rk×d with different k. For a F̂ i

p,
it will slide from the top of P e

u to the last row with stride 1, which means it will
interact with every paper j, 1 ≤ j ≤ np − k + 1. The interaction is

cij = ϕc(P
e
u;j:j+k−1 ⊙ F̂ i

p) (1)

Here ϕc is the activation function and ⊙ is inner product operator. So the result for
F̂ i
p is

ĉi = [ĉi1, ĉ
i
2,, ĉ

i
np−k+1] (2)

7

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

And we apply max pooling on it to keep the most significant feature extracted by a
horizontal filter. So the last output of all the nh filter F̂p is

ôp = {max(ĉ1),max(ĉ2),,max(ˆcnh)} (3)

Besides, there are nv vertical filters Fp ∈ R1×np , sliding form the left of P e
u to right.

This outputs
op = {c1, c2,, cnh} (4)

Every latent dimension in P e
u has different meanings, so we don’t apply max pooling

on op.

Similarily, we have another CNN for Ae
u which yields op and ôa and oa.

After that, we use a fully-connected neural network to aggregate the outputs of
CNNs and generate a representation for user’s interest

z = ϕf (f(concat(ôp, op, ôa, oa))) (5)

Here, ϕf means the activation function.

Finally, we inner product z ∈ Rd and W e
u ∈ Rw,d to get the final score for each

candidate(Note that W e
u is extracted from scholar embedding layer).

score = Wz + b (6)

Here, b is the bias for each mentor.

3.1.2 Training

For each sample(a student-mentor relationship), we derive 1 true mentor and 3
randomly selected fake mentor. The we have ytrue and ypred and define loss with
binary cross entropy loss(BCELoss).

Besides, for bacth training, we limit the length of au as 20 and pu as 10. For
those longer, we only keep the most recent ones; For those shorter, we add padding
term to them to align them. Other hyparameters setting are as following:

8

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

Table 3: Training settings
Hyparameters Value
Epoch number 200

Batch size 512
Learning rate 0.001

L2 normalization 0.001
Dropout rate 0.5

nh 10
nv 4
d 64

By the way, we record the hyparameters for some trainings in best_metric_record.txt
and fixed random seeds so it’s easy to reproduce every record.

3.1.3 Testing

When testing, we pick 1 true mentor and 99 randomly selected fake mentors for
each sample, and return the top 10 mentors with highest result. From a classification
view, we give these 10 mentors positive label. And based on that, many classification
metrics can be used here. However, the superbound of them are not necessarily 100%
because true positve number is at most 1 here. We group the testing metrics here

• Accuracy-based: Precision (P@10), Recall (R@10), F1 Score (F1@10).

• Ranking-based: Area Under the ROC Curve (AUC), Normalized Discounted
Cumulative Gain (NDCG@10), Mean Average Precision (MAP@10), Average
Rank(AR).

In the generated recommendation list, accuracy-based metrics focus on how many
true mentors are included while ranking-based metrics are sensitive about the ranked
position of true mentors.

The following table shows in details the best experiment results of our model.

9

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

Table 4: Experiment results

P@10 R@10 F1@10 AUC NDCG@10 MAP@10 AR
Our Model 0.0911 0.9112 0.1657 0.9471 0.8632 0.0091 6.2417

Random Score 0.0101 0.1007 0.0183 0.5042 0.0454 0.0010 50.0849

3.2 Feature Learning

3.2.1 Motivation

In the recommendation system, we need to use the embedding layer to obtain
the feature matrix of the paper and the author as input. At the beginning, we
directly initialized it after random training, but then we thought that the relationship
between the paper and the author can actually be used as an effective information to
recommend the tutor. For example, if we find that two authors have published many
papers in collaboration, then we can guess that they may be students of the same
teacher in the same laboratory, or simply that there is a teacher-student relationship
between them.

3.2.2 Algorithm

In the original data, there is the author-paper relationship, from which we can ex-
tract two other relationships, namely the author-author relationship and the paper-
paper relationship. Formally form these three relationships into three relationship
matrices, strictly defined as follows:

1. Author-Paper relationship R = [rij] ∈ {0, 1}P×A, where rij = 1 means
author i publishes a paper j; otherwise rij = 0.

2. Paper-Paper similarity RP = [rpij] ∈ {0, 1}P×P , where rpij = 1 means paper
i and paper j have some common authors; otherwise rpij = 0.

3. Author-Author similarity RA = [raij] ∈ {0, 1}A×A, where raij = 1 means
author i and author j have some common papers; otherwise raij = 0.

we model relations by considering the local proximity between author and paper
vertices. In detail, we use inner products to estimate the local proximity between

10

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

author and paper vertices in the embedding space,

r̂ij = σ(−(pe
i)

Tae
j), i ∈ [1, · · · , |P|], j ∈ [1, · · · , |A|]

where σ(x) = 1
1+e−x is the sigmoid function, which transforms the relation value to a

probability.

To preserve the explicit relations, the local proximity is enforced to be close to
author-paper relations in the bipartite graph via a cross-entropy loss function:

L1(P
e,Ae) = −

|P|∑
i=1

|A|∑
j=1

(rij log r̂ij + (1− rij) log(1− r̂ij))

Similarity, for the Paper-Paper similarity, and the Author-Author similarity, we
can also get the similar formula:

r̂pij = σ(−(pe
i)

Tpe
j), i ∈ [1, · · · , |P|], j ∈ [1, · · · , |P|]

r̂aij = σ(−(ae
i)

Tae
j), i ∈ [1, · · · , |A|], j ∈ [1, · · · , |A|]

So, we can also use cross-entropy loss function to enforce it to close the similarity

L2(P
e) = −

|P|∑
i=1

|P|∑
j=1

(rpij log r̂
p
ij + (1− rpij) log(1− r̂pij))

L3(A
e) = −

|A|∑
i=1

|A|∑
j=1

(raij log r̂
a
ij + (1− raij) log(1− r̂aij))

To generate question embeddings that preserve Author-Paper relationship, Paper-
Paper similarity, and Author-Author similarity simultaneously, we combine all the
loss functions to form a joint optimization framework, namely, we solve:

minP e,Ae(L1(P
e,Ae) + L2(P

e) + L3(A
e))

Once the joint optimization is finished, we can obtain the pre-trained embeddings
P e,Ae, which can be used as the input of existing recommendation system.

11

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

To sum up, our pre-training model is to use the inner product of the
embedding matrix to simulate the relationship between the real paper
and the author as much as possible, so as to extract effective information
for subsequent operations. The whole framework is shown below

Figure 3: Pre-Framework

3.2.3 Experiments

After inputting the pre-trained embedding matrix into the recommendation sys-
tem for further recommendation training, we take 1 true mentor and 99 randomly
sampled false mentors for each sample, and take Top10 results to evaluate, then the
results are as follows:

It can be seen that compared with the random initialization, the model using
pre-trained embedding is more stable in training, and there will be no overfitting
soon, and each index has also been improved to a certain extent. This illustrates
the effectiveness of our model.

12

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

Figure 4: Result

4 Front-End

4.1 Design

Our front-end designed is based on a web design tool - Django. Django is a free and
open web framework to help developers build websites with few codes. Django takes
care of much of the hassle of Web development, so developers can focus on writing
your app without needing to reinvent the wheel.

Figure 5 shows the core design of a django program, which can be summarized as
MTV pattern:

• M (Model) : Model is responsible for the function of programming, and the
mapping of business objects and databases (ORM).

• T (Template) : Template is responsible for how to display the page (HTML)
to users.

• V (View) : View is responsible for business logic and will call Model and
Template when appropriate.

• Besides MTV, a URL distributor is also needed. Its function is to distribute
URL page requests to different views for processing, and then View calls the
corresponding Model and Template.

Based on the MTV pattern of Django, we build our website framework as Fig. 6.

13

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

Figure 5: The MTV Diagram of Django

The Template module shows the main pages of the framework, the View module
presents the corresponding python functions and the Model module is composed
of our database and back-end program. When users get interaction with Template
html indexes, the commands are sent from front-end into View’s functions which will
connect to Model’s data and program. The yellow arrows show the inter connections
between the three modules in our framework.

In our website framework, there are five main web pages listed as follows.
Their implementation details will be discussed in the next subsection.

1. index.html : The login in index of users.

2. Registration.html : The Registration.html provides a sign up index for
new users.

3. Search.html : Users can search and collect for their favorite authors or paper
in the Search.html.

4. Favorite.html : The Favorite.html displays the collections of users’ ac-
count.

5. Recommend.html : The recommend result of our back-end program is
showed in Recommend.html.

14

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

🌐Website

Template

Index.html

Registration.html

Search.html

Favorite.html

Recommend.html

View.py

Index ()

Registration ()

Search ()

Do_collect ()

Favorite ()

Recommend ()

Model

Prefer_conference.sql

Authors.sql

Papers.sql

Favorites.sql

Author_relations.sql

Recom_model.py

Users.sql

Figure 6: The Overall Framework of Our Website

4.2 Implementation

Last subsection, we present the five web pages and their connections with other
modules of our front-end framework. In this subsection, we will discuss their View
functions and how they are connected.

4.2.1 Index()

The index() function is designed for users’ login. When new users occur, it gets users’
login information and store it into Users Table. When old users sign in, this function
will search Users Table and decide whether the account matches the password or
not.

4.2.2 Registration()

The Registration() function is designed for new users to create new user account.
What is new in this function is that it can defer users’ preference by asking users’
favor conferences, which is named the Cold Start in Recommender Systems. In
implementation, we first collect users’ favor conferences. Then, we search the author-
conference map to get the most relative authors with these conferences. Next, for

15

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

better recommend, we keep searching other authors who are most relative to con-
ferences in a similar categories. At last, we choose top 20 authors shown in the web
page to users for Cold Start Recommendation.

4.2.3 Search() & Do_collect()

The Search() function is designed for authors and paper separately. It connects to
both Authors Table and Papers Table in the database. When user searches for a
author (or paper), he can just enter a part of the author’s (or paper’s) name in the
search box, and then the all relative results will be listed in the downside page.

Users can also use the Do_collect() function to collect their favor authors (or papers).
Each search result is returned to the web page with a ”favorite” button which allows
users to collect their favorites by it. Once a author is collected by current user, the
button changes into a ”delete” one, and users can remove their collections through
it.

4.2.4 Favorite()

The Favorite() function is to show the collections of user. It connects the Favorites
Table to get users’ collections and returns them onto the web page. Similar to
the Do_collect() function, it also allows user to remove their collections by clicking
”delete” button.

4.2.5 Recommend()

When users have collected a certain amount of authors (and papers), they can
generate their personal recommendations through Recommend() function. It calls
our back-end model, searches in all teachers and shows results.

However, in practice, there is often a large number of teachers we need to search and
this is time consuming. Some searches of teachers are not suitable for current user,
e.g. a medicine teacher for a computer science majored student. Therefore, we use a
pre-recommend method to choose a limit number of teachers (named teacher pool)
sent to back-end model. Using the Author_relations Table, we iteratively search
the user’s collected teachers and their co-authors and finally build the teacher pool.

subsectionCold Boot Recommendation

16

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

The recommendation system needs to make particular recommendation for users
based on their previous behaviors and their interests. If we have obtained these
information, it’s easy to make suitable recommendation through specific recommen-
dation algorithms or models.

Nevertheless, a problem comes to our mind naturally that how we make recom-
mendation for new users, since we don’t know their previous behaviors and their
interests. This kind problem is called “Cold Boot Recommendation” in recommen-
dation system. In order to make our system more user-friendly, we designed
our own form of Cold Boot Recommendation as below.

In the front-end, we design a registration page for new users to create new ac-
counts. This page contains a area where the new user can choose ther interested
field and corresponding conferences. Then we will make some preliminary recom-
mendation based on their choices after registration is done. This registration page
is demonstrated as below. For example, in Fig. 7(b), we choose 5 conferences in AI
field. Here, we only list three fields. We will make it completed later.

(a) Full View (b) Choose Conferences

Figure 7: Registration Page

How do we recommend for new users according to their choices in this page? Now,
let’s discuss about our method. In the back-end, we divide the conferences according
to the fields and classes (CCF has classified these conferences into 3 classes, i.e., A,
B and C). For a given value n which represents the number of objects we need to
list in the preliminary recommendation, we let one part of these n objects is directly
linked to the conferences the user choose. The remaining candidates are chosen from
the conferences in their interest fields except the ones they have chosen. It is worth

17

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

mentioning that in each part, A-class conferences holds the highest probability of
being recommended. B-class ones is only second to A-class.

4.3 Data Visualization

In the final recommendation page, we visualize the results in a dynamic graph as
Fig. 8 shows. It’s a form of sunburst chart.

(a) Full View (b) Part View

Figure 8: Data visualization

In this page, there exists a table listing the authors shown in the sunburst chart.
We write a javascript which can transfer the table below into a sunburst chart
directly. The central area represents the user. The outer circular ring next to the
central area contains the authors recommended through our model. The outmost
circular ring contains the potential authors obtained from the inner authors. For
example, as Fig. 8(b) shows, when we click on the inner author “Daphne Koller”,
we can get a new sunburst chart which centers on “Daphne Koller”. We can click on
the center again to return to the original chart. The degree to which we recommend
an author is measured through the angle of the corresponding sector.

4.4 Demonstration

Since we designed a Cold Boot Recommendation function for new users, we will
demonstrate a intergrated series of procedures beginning from registration as below.

18

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9: Demonstration

19

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

Figure. 9(a) shows the homepage. We click on the “Sign In” button and it will
turn to registration page. After inputting the user name and password, we choose
our interested fields and conferences in the Cold Boot Recommendation module.
Afterwards, a page like Fig. 9(d) will be presented on the screen. The table below
lists some authors we may take interest in based on our choices on the registration
page and our Cold Boot Recommendation algorithm. We can add our interested
authors by clicking on the “Add to the favorites” button and can remove them from
our favorites through clicking on the “Delete” button.

The search range of the search box can be switched as Fig. 9(e) shows. We
can search authors, papers and conferences. As Fig. 9(f)(g)(h) shows, we search
for authors named “jack”, authors named “tom” and papers whose title containing
“database” one after the other. We add those we are interested in to our favorites.

Next, we can click on the “My favorites” button in the navigation bar to see what
we have added. Through clicking on “Authors” and “Papers” button at the top left
corner, as Fig. 9(i)(j) shows, we can see authors and papers we’re interested in. In
the end, we click the button “Generate my recommendation” at the top right corner
to gain the final recommendation according to our interests.

5 Conclusion

In this project, we design and implement a Supervisor Recommendation System,
which is tailored for those who has academic interests but confused about choosing
suitable mentor. Based on real scenario, we devise two type of recommendations:
recommendation based on user interests and cold-boost recommendation. For for-
mer, We deliberately utilize a deep learning model based on CNN to make recom-
mendation, pretrain the embedding to further improve it and define a candidate
mentor pool to squeeze the searching area and improve time efficiency. For the
latter, we manually choose popular conferences from different subjects and offer to
users to guess her/his interests and make initial recommendation. Besides, we bulid
a website for users to browse, collect academic information and get recommendation
feedbacks, which suits our model well. Finally, we conduct extensive experiments
to prove the efficiency of our recommendation model.

For future work, firstly, we might try different methods for our recommenda-
tion model, such as the prevailing self-attention mechanism and GAN. Second, we

20

Presented By Xianyu Chen, Chenzhengyi Liu, Nianzu Yang, Ziheng Zhao

could extend the functionality of our website such as detailed demonstration page
for scholars, papers, conferences and so on(since they are relatively irrelevant to the
recommendation process so we save this part of work). Third, we can use more sup-
plementary information about users to improve the quality of recommendation, such
as the venues they are interested in, and the semantic feature of each paper(which
will involves NLP) and so on. Fourth, we can enlarge our dataset by digging more
student-relationships.

6 Acknowledgement

In the end, we want to show our gratitude to Mrs.Fu and TAs. After this semester,
we have learned rather considerable knowledge and our programming ability has been
enhanced. We believe that these new knowledge will benefit us a lot later. Also as
the third-winner in the final contest, we appreciate your thoughtfully design of the
contest and prize.

Thanks for your efforts :) !

21

