
Network connectivity protection under the risk of

adversarial model

薛冯晨517021910928

2020年 6月 21日

Abstract

In the article, we talk about a network under the risk of adversarial

model. The attacker and defender both select some edges to destroy or

protect pair connectivity in a time slot. And we propose an algorithm for

defender to protect network, which borrows the idea of EXP3 algorithm[1]

for multi-arm bandit(MAB) problem. Then some analyses show that my

algorithm can get an optimal result as time approaching infinity.

ketwords

network connectivity, reinforcement learning, multi-arm bandit

1 Introduction

As security is critical to network performance, it is vulnerable to a wide

variety of attacks. Attacks can be from two categories: ”Passive” when a net-

work intruder intercepts data traveling through the network, and ”Active” in

which an intruder initiates commands to disrupt the network’s normal operation

or to conduct reconnaissance and lateral movements to find and gain access to

assets available via the network. Under the condition of ”active” attack, the

network defender should confront with the intruder. So this can also be called

”adversarial”.

For example, a malicious attacker may perform a denial of service (DoS)

attack by jamming in a selected area of links or creating routing worm to cause

severe congestions over the network. Or more directly, the attacker may use

some electromagnetic interference to obstruct the wireless network connectivity

1

in the war. So an algorithm for defender to protect the network in the adversarial

condition has strong practical meaning.

2 Modeling

The realistic problem is always manifold and difficult to solve so we only

abstract the necessary information and model it as multi-arm bandit problem.

2.1 Attacker and denfender

Though the attacker is always a real person under the adversarial condition,

we don’t care about what exactly causes the edge failure. Actually we model it

as a sequence of edges which are going to fail for each time slot. In such case,

the types of attack and how it works are all neglected and we just abstract the

most important information that which edges fail.

As for defender, the basic mechanism can also be ignored and what we need

to know is which edges need to be protected. How to protect them specifically

will not be considered. Another critical thing is the capacity of defender, that

is how many edges it can protect. This is an important parameter during the

modeling.

Attacker and defender are respectively the ”environment” and ”agent” in

figure 2.1 about reinforcement learning. The defender do action, i.e. selecting

edges to protect and then it get observations, i.e. the connectivity of network.

What we need to do is finding the optimal action based on all the previous

observations and rewards.

Figure 1: Reinforcement learning

2

2.2 Graph

In realistic situation the network may be manifold and difficult to manage.

Here we abstract the structure of network into a graph G(V,E) such as the one

shown in figure 2.2. It has two terminal nodes s and d which respectively refer

to start node and destination node. Attacker uses some method to continuously

attack some edges in order to destroy the connection between s and d while

defender do exactly the opposite.

Figure 2: A network with two terminal nodes s and d

2.3 Reward

Defender is the manager of network, so it can send messages from node s

and receive them in node d. Therefore whether the network is connected or not

is easy to detect for defender, but to know which edges fail cost more. So we

assume it can only get the connectivity information.

After selecting some edges to protect, these edges will get a reward defined

by the connection. For example the most naive reward function of edge e as

time t is:

R(e, t) =

0 if connection fails,

1 if connection succeeds.

If considering the cost c(e) of protecting each edges, we can define the reward

to reduce the weights of edges with higher c(e) as

R(e, t) =

0 if connection fails,

λe

c(e) if connection succeeds.

where λe is a hyper parameter for each edge.

3

3 Algorithm

3.1 EXP3 algoritm for MAB problem

The main concerns of MAB problem is to trade off ”exploration” against

”exploitation”. Exploration means try to select the edges never protected and

exploitation strategy prefers to always choose the best known edges. In EX-

P3 algorithm[1], the edge to protect is selected by its probability p, which is

calculated by weights w of each edge as:

pi(t) = (1− γ)
wi(t)∑|E|
j=1 wj(t)

+
γ

|E|
i = 1, 2, . . . , |E|

The exploration parameter γ for each path and edge controls the minimum of

that probability, so that the better edges appears more likely while others will

also be selected soon or later.

After defender competing with attacker and getting a reward r at time t,

we should update the weight of protected edge ej as:

r̂j(t) =

 r/pj(t) if ej is protected

0 otherwise.

wj(t+ 1) = wj(t)e
γ1r̂j(t)/|si|

Actually any way to calculate w(t + 1) is reasonable, but this formation can

make the following analyses more easily.

3.2 Our algorithm

Hyper parameter k denotes the number of edges that defender can protect.

Even though only one path from node s to d, the connectivity is protected suc-

cessfully. So in the optimal algorithm, these edges prefer to be distributed along

the same path. Otherwise under some extreme conditions, the algorithm perfor-

mance will not be optimal. And if the attacker is more gentle, the connectivity

can also be protected greatly.

According to this insights, the defender should get a cover S = {s1, s2, . . . , sn}
of G(V,E) using DFS(Depth First Search) whose elements are all path from n-

ode s to d. Then in our algorithm 1, one path is firstly selected according to the

modeled probability from the cover S. Then it should choose k edges to protect

4

Algorithm 1: Connectivity Protection Algorithm

Input: Graph G(V,E), exploration parameter γ ∈ (0, 1]，k,

1 Initialize all values with 1

2 Get a cover S = {s1, s2, . . . , sn} of E whose element si(i = 1, . . . , |S|) is a

path from node s to d using DFS

3 for t = 1, 2, . . . do

4 Set

pi(t) = (1− γ1)
wi(t)∑|S|
j=1 wj(t)

+
γ1

|S|
i = 1, 2, . . . , n

5 Select sk randomly according to the probabilities

6 Set

pkj(t) = (1− γkj)
wkj(t)∑|sk|
j=1 wkj(t)

+
γkj
|sj |

i = 1, 2, . . . , |sj |

7 Select E′ = {ei1 , . . . , ein} to protect randomly according to the

probabilities

8 Get rewards r = 1 or 0

9 for j = 1, 2, . . . , |si| do

10 r̂j(t) =

 r/pj(t) if ej ∈ E′

0 otherwise.

11 wkj(t+ 1) = wkj(t)e
γkjr̂j(t)/|si|

12 end

13 for j = 1, 2, . . . , |S| do

14 r̂j(t) =

 r/pj(t) if j = k

0 otherwise.

15 wj(t+ 1) = wj(t)e
γ1r̂j(t)/|S|

16 end

17 end

5

specifically in this path, where k is a hyper parameter denoting the number of

edges defender can protect. So actually the problem is modeled as one MAB

problem nesting in the other.

4 Analysis

The measure of performance for our algorithm is the regret which measures

how many times the defender win by following algorithm A than choosing the

best action continuously. Because there are two EXP3 process in algorithm 1,

the regret is also consisting of two parts respectively referring to selecting path

and edges. Given any time horizon T , the regret is defined as:

RA(T) = Rpath(T) +

|S|∑
i=1

Riedge(T)

= [Gmax(T)− E(GA(T))] +

|S|∑
i=1

[Gimax(T)− E(GiA(T))]

where

Gmax(T)
def
= max

si∈S

T∑
t=1

ri(t)

Gimax(T)
def
= max

ej∈E′

T∑
t=1

rj(t)

are the returns of single globally best action.

Then talk about the performance of our algorithm. The paper [2] gives a

upper bound as theorem 1.

Theorem 1. For any γ ∈ (0, 1],

Riedge(T) = Gmax − E(GA) ≤ (e− 1)γGmax +
|si| ln |si|

γ

γ is a hyper parameter of our algorithm, so we can assign an appropriate

value as theorem 2

Theorem 2. For any t > 0, assume that gi ≥ Gimax and our algorithm is run

with parameter

γ = min{1,

√
|si| ln |si|
(e− 1)gi

}

6

Then

Riedge(T) ≤ 2
√
e− 1

√
gi|si| ln |si| = O(

√
gi|si| ln |si|)

Proof: If g ≤ |si| ln |si|e−1 , then the bound is trivial since the expected regret cannot

be more than g. Otherwise, by Theorem 1, the expected regret is at most

(e− 1)γGmax +
|si| ln |si|

γ
= 2
√
e− 1

√
gi|si| ln |si|

So now we have an upper bound of the regret Riedge(T), and similarly we

can get Rpath(T) ≤ O(g|S| ln |S|). Given that g ≤ T for the definition, the

whole regret can be represented as

RA(T) = Rpath(T) +

|S|∑
i=1

Riedge(T)

= O(
√
g|S| ln |S|) +

|S|∑
i=1

O(
√
gi|si| ln |si|)

≈ O(
√
g|S| ln |S|) +O(|S|

√
ḡ|s̄| ln |s̄|)

= O(
√
g|S| ln |S|) +O(

√
g|E| ln |s̄|)

= O(
√
T |S| ln |S|) +O(

√
T |E| ln |s̄|)

Ana because usually |E| � |S|, the regret RA(T) is O(
√
T |E| ln |s̄|).

If talking about the average regret, we can find thatRA(T)/T = O(
√
|E| ln |s̄|

T),

which approaches zeros as t going to infinity. So our algorithm can give an op-

timal result at this condition.

5 Conclusion

In this report, we introduce the researching problem called network con-

nectivity protection and model it under adversarial regime. Then we transfer

it into an edge selecting problem and propose an algorithm based on EXP3.

The analyses show that it is asymptotically optimal with regret O(
√
T |E| ln |s̄|)

regardless of the reward assignments.

7

References

[1] Gergely Neu. Explore no more: Improved high-probability regret bounds

for non-stochastic bandits. In Advances in Neural Information Processing

Systems, pages 3168–3176, 2015.

[2] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochas-

tic and nonstochastic multi-armed bandit problems. arXiv preprint arX-

iv:1204.5721, 2012.

8

