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Abstract
This paper introduces our group’s work on Evolv-
ing Knowledge Graph (Evolving KG). Evolving
KG is a structure of knowledge graph that counts
time slot of each record in, showing the evolving
nature of actual relationship network. We will
discuss some existing works that we referred, and
raise our innovative improvements on them. Be-
sides, we construct a temporally aware event evo-
lutionary graph with 609,871 entities and 467,479
quadruples and at last perform experiments and
data visualization on it.

1. Introduction
The knowledge graph (KG) represents a collection of inter-
linked descriptions of entities – real-world objects, events,
situations or abstract concepts, where Descriptions have a
formal structure that allows both people and computers to
process them in an efficient and unambiguous manner. And
entity descriptions contribute to one another, forming a net-
work, where each entity represents part of the description of
the entities, related to it.
Knowledge graph has been proven as an effective model
for characterizing and studying complex multi-relational
settings in real world. In recent years databases such as
YAGO, Freebase, DBpedia, were established and applied
into multiple research fields. Traditional KG is represented
as a combination of triples:(source entity(s), relation(r), tar-
get entity(t)), that indicates the fact subjectEntity-relation-
objectEntity, and form the entire relationship network from
them.
Many studies is funded on the traditional KG structure.
However, traditional knowledge graphs simply provide a
snapshot of knowledge structure for specific time period. In
actual world, the relationship between entities changes from
time to time, and the real KG has its envolving nature.
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In this paper, we will introduce our work on Evolv-
ing Knowledge Graph. We will first talk through ex-
isting work related, form our model structure, and then
discuss some method from existing work for Evolv-
ingKG embedding. Next we have a complete work-
flow for establishing our own Knowledge Graph Database
”FEEG”. And we made experiments and visualization
upon it. The conclusion and acknowledgement through
the project will be talked in the end. Our code will
be available at https://github.com/HeyyyyyyG/Temporal-
aware-knowledge-graph.

2. Related work
Knowledge graph is an important research area. In this sec-
tion, we will introduce the related work in three aspects: (1)
Knowledge Graph Representation Learning (2) Evolving
Knowledge Graph Modeling (3) Temporal Fact and Event
Extraction.
Knowledge Graph Representation Learning: Knowl-
edge graphs have been verified to be useful in wide applica-
tions such as information extraction (Hoffmann et al., 2011),
(Daiber et al., 2013), question answering (Lukovnikov et al.,
2017), (Yih et al., 2016), named entity disambiguation
(Damljanovic & Bontcheva, 2012), (Zheng et al., 2012)
and semantic parsing (Berant et al., 2013). One of fun-
damental and important techniques in knowledge graphs
is embedding, whose key idea is to embed the items in
knowledge graphs, i.e., entities and relations, in continu-
ous vector spaces, so as to make simplification while pre-
serving the network structure. An enormous amount of
research has been done in this field, especially for KG com-
pletion or link prediction task (Bordes et al., 2013). (Nickel
et al., 2015) provides a detailed review of the recent KG
embedding learning methods. These can be broadly cate-
gorized into two different paradigms. TransE(Bordes et al.,
2013), TransH(Wang et al., 2014), TransR (Lin et al., 2015),
TransD (Ji et al., 2015) are the translational distance-based
models. Here the main theme is to minimize the distance
between two entity vectors where one of them is translated
by a relation vector. The realm of matrix factorization based
methods includes bilinear model RESCAL (Nickel et al.,
2011), DistMult (Yang et al., 2014), HoIE (Nickel et al.,
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2016). Some of the other notable models include Neural
Tensor Networks(NTN) (Socher et al., 2013). However, the
temporal dimension remains silent in all of these inference
methods.
Evolving Knowledge Graph Modeling: A multitude of
previous studies such as (Meng et al., 2016) and (Liu et al.,
2016) have clarified that network structure evolves over
time. Regarding this, some models have been proposed,
among which preferential attachment is a simple but useful
one. In preferential attachment, for various reasons, nodes
with more existing edges are more likely to create a new
one. It further leads to a multiplicative process which is
known to give power-law distributions. Due to its usabil-
ity, preferential attachment has been widely used as a basic
rule in varying scenes such as social networks (Zuev et al.,
2015), protein networks (Eisenberg & Levanon, 2003) and
nanoparticles in liquid (Welch et al., 2016). Besides pref-
erential attachment,(Liu et al., 2019) is among the first to
extend traditional triples into quadruples, adding the time as
the fourth dimension. It views time as a decaying variable
which indicates the influence of temporally various tuples
on current link predictions. It employ time as a factor but
have not fully exploited its potential. Utilizing the form
of quadruple, (Dasgupta et al., 2018) learns a hyperplane
for each time period, project the triples on the hyperplane
and then implement a TransE-like method. This method
is straightforward but lack of the capability of predicting
current links with previous quadruples.
Temporal Fact and Event Extraction: Time, apart from
being an information, also introduces a separate dimen-
sion to knowledge. Therefore, temporal scoping of rela-
tional facts is an imperative part of automatic knowledge
graph construction and completion. T-YAGO (Wang et al.,
2010) extracts temporal facts from semi-structured data
like Wikipedia Infoboxes, and categories using only regu-
lar expressions. On the other hand, systems like PRAVDA
harvests temporal information from free text sources us-
ing label propagation. CoTS (Talukdar et al., 2012b) uses
integer linear program based approach to model temporal
constraints and proposes joint inference frame-work with
few seed examples. A method for discovering temporal
ordering among factual relations was proposed in (Taluk-
dar et al., 2012a). The task of extracting temporally rich
events and time expressions and ordering between them is
introduced in TempEval challenge (UzZaman et al., 2013).
Various approaches such as (McDowell et al., 2017) made
for solving the task proved to be effective in other temporal
reasoning tasks. However, many of the above methods are
designed for constructing traditional knowledge graph, i.e.
each node represents an entity and each edge represents a
relation. Though this kind of knowledge graph is effective in
many aspects, it cannot infer events directly. One promising
solution is to build event evolutionary graph, in which nodes
represent events and edges represent logical relationships.

(Ding et al., 2019) builds a similar event logic graph but
ignores the time factor. In our work, we build an temporally
aware event evolutionary graph in the field of finance.

3. Method
3.1. Evolving Knowledge Graph Learning

3.1.1. BACKGROUND

As introduced in section 2, EvolvingKG(Liu et al., 2019)
and HyTE(Dasgupta et al., 2018) are two of the most rep-
resentative works in the area of evolving knowledge graph
learning. In this subsubsection, we will briefly introduce
them and recognize the shortcomings of these works since
our work is largely based on them. Both works improved
from TransE, which is the most popular model in traditional
knowledge graph modeling. The most significant point of
modeling evolving knowledge graphs is how to fully exploit
the potential of time. Each method in these works are cre-
ative but not perfect.
EvolvingKG is among the first to introduce time dimension
into the traditional triples (h, r, t) and extent them to quadru-
ples (h, r, t, τ). In this work, time is treated as a decaying
factor, indicating that the influence of a triple decays with
time. A triple has a stronger effect on current link prediction
if it happens closer to present.

Figure 1. An illustration on the framework of (Liu et al., 2019)

For each triple, they calculate the loss with an additional
factor e−λ(τ−τi). The total loss is modified as

L(t) =
∑

(h,r,t,τi)∈S
(h′,r,t′,τi)∈S′

[γ + e−λ(τ−τi)P − e−λ(τ−τi)N ]+,

where S is the set of correct quadruples, S′ is the set of
corrupted ones, P = d(h+ r, t), N = d(h′ + r, t′), and d
is the dissimilarity measure.
The advantage of this method is that it is simple to im-
plement and there is no extra time complexity and space
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complexity compared to TransE. Furthermore, this can be
used as both transductive learning and inductive learning,
i.e. the time period of training set and testing set can either
intersect or not. However, the shortcoming is that it utilizes
a fix decaying function to measure the influence of time
which might not fully exploit the effect of time on various
triples.
HyTE also utilizes quadruples (h, r, t, τ) as an extend of
(h, r, t). The most creative work of it is that it views each
time period as a hyperplane. Each triple will be projected to
the corresponding time hyperplane and conduct TransE on
the hyperplane. In this way, we can learn the representation
of a triple on different time period.

Figure 2. An illustration on the framework of (Dasgupta et al.,
2018)

The strength of this method is that it learns a hyperlane
for each time period which can fully exploit the feature of
time compared to EvolvingKG. However, the deficiencies
are obvious: (1) It can just used as transductive learning
but not inductive learning. The time period of training set
and testing set should be exactly the same. Otherwise, the
time representation of testing set cannot be learned while
training. (2) For each time period we need a specific vector
to represent it which cause an O(N) space complexity. This
will be reduced effectively to O(1) in our improvement.

3.1.2. OUR EFFECTIVE IMPROVEMENT ON HYTE FOR
INDUCTIVE LEARNING

In our work, we aim to build a model which can be used
for inductive learning based on HyTE. Given the times-
tamps, the graph can be dismantled into several static
graphs consisting of triples that are valid in the respective
time steps, e.g. knowledge graph G can be expressed as
G = Gτ1∪Gτ2∪· · ·∪GτT , where τi, i ∈ 1, 2, · · ·T are the

discrete time points. Following HyTE, we represent time
as a hyperplane i.e., for T number of time steps in the KG,
we will have T different hyperplanes represented by normal
vectors wt1 , wt2 , · · · , wtT . Thus, we try to segregate the
space into different time zones with the help of the hyper-
planes. Now, triples valid at time τ (i.e., the sub graph Gτ )
are projected onto time specific hyperplane wτ , where their
translational distance (TransE) is minimized.
We compute the projected representation on wτ as follow-
ing:

Pτ (eh) = (eh − wTτ eh)wτ ,

Pτ (er) = (er − wTτ er)wτ ,

Pτ (et) = (et − wTτ et)wτ ,

where ||w||2 = 1.
Intuitively, if we want to conduct inductive learning, i.e.
predict the corresponding wτ given an unseen τ , wτ should
follows a consistent function wτ = g(τ).
Strategy 1:
In (Dasgupta et al., 2018), though training without any limits
on wτ , it has been proved that adjacent time period have
similar hyperplane wτ . A straightforward assumption is that
wτ changes with a fixed ∆w along with time. This can be
represented as

∆wi+1 = wτi+1
− wτi ,

∆wi = wτi − wτi−1
,

∆wi+1 = ∆wi = ∆w

where i ∈ 2, 3, · · · , T − 1. In order to verify this assump-
tion, we employ PCA to visualize all ∆wi. The result is
shown in Figure 3. It is easy to find out that most points

Figure 3. PCA on ∆wi.
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aggregate in the middle, indicating the homology between
∆wi. According to this assumption, we get

wτ = g1(τ) = wτ1 + (τ − τ1)w′.

Using this strategy, we only need to learn wτ1 and w′ which
leads to an O(1) space complexity.
Strategy 2:
In a more complex and general perspective, instead of as-
suming ∆w to be static, we can also assume that Deltaw
varies along the time. Describing this change, a possible
function is

∆w = a∆w1 + b.

Through this we can derive a quadratic function f2 for wτ
as

wτ = g2(τ) = wτ1 + (τ − τ1)w′ + (τ − τ1)2w′′.

Similarly, we only need to learn wτ1 , w′, and w′′ which also
leads to an O(1) space complexity.
Strategy 3:
From Figure 3 we see that although most of the points
gather, there is still some outliers. This indicates the above
strategies might not work in all scenarios. In order to solve
this problem, we further employ the idea of sampling. We
assume that w′ (and w′′) are not fixed values, instead they
follow Gaussian distribution. When calculating wτ , they
are sampled from the following distributions:

w′ ∼ N(µw′ , σw′),

w′′ ∼ N(µw′′ , σw′′).

The sampling process not only solves the problem of outliers
but also increases the robustness of our method. However,
the process cannot support gradient descent as the optimiza-
tion strategy since it is non-differentiable. Therefore, we
employ the reparameterization operation. Instead of sam-
pling directly from the distribution of w′ and w′′, we sample
a random variable δ from the standard normal distribution

δ ∼ N(
−→
0 , I).

Maintaining the vectors of µw′ , σw′ , µw′′ , and σw′′ , we
calculate w′ and w′′ as

w′ ← µw′ + σw′ × δ,

w′′ ← µw′′ + σw′′ × δ.

In this way, the addition and multiplication operation sup-
ports back propagation. The space complexity is doubled
but still maintained O(1).

3.1.3. OPTIMIZATION

We expect for all positive quadruples, Pτ (eh) + Pτ (er) ≈
Pτ (et). Following (Dasgupta et al., 2018), we use the fol-
lowing scoring function.

fτ (h, r, t) = ||Pτ (eh) + Pτ (er)− Pτ (et)||l1/l2 .

We minimize the margin-based ranking loss

L(t) =
∑

(h,r,t,τi)∈S
(h′,r,t′,τi)∈S′

max(0, γ+fτ (h, r, t)−fτ (h′, r, t′)),

where S is the set of correct quadruples, S′ is the set of
corrupted ones.

3.2. Constructing Temporally Aware Event
Evolutionary Graph

From our perspective, though traditional knowledge graphs
are popular these days, they still have some deficiencies,
such as the lack of ability to infer. Instead, event evolution-
ary graph can handle this problem by setting each node as
an event and each edge as an logic relation. In our work, we
focus on the cause-and-effect relationship. Furthermore, we
add the time of the event pairs as an attribute of the edge.
The construction of temporally aware event evolutionary
graph is more of an engineering work than a scientific re-
search. We crawl news from the Internet and extract event
pairs from it. The whole process is shown as Figure 4. For
example, given a piece of news saying ”According to the xx
times report on March 15, 2020, a new coronary pneumonia
with uncertain sources has become a pandemic worldwide,
leading to a world economic recession”, we can extract a
event pairs with its timestamp. The most significant part in

Figure 4. Process of constructing temporally aware event evolu-
tionary graph.

the construction is causality extraction. In our work, we try
two different methods for it.
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3.2.1. UNSUPERVISED CAUSALITY EXTRACTION

The first step to construct event evolutionary graph is to iden-
tify cause-effect pairs from unstructured natural language
texts. As the amount of data is extremely large (millions of
documents), obtaining human-annotated pairs is impossible.
We find that causal relations expressed in text have various
forms. We therefore provide a procedure similar to this
work (Ding et al., 2019), which can automatically identify
mentions of causal events from natural language texts.
We construct a set of rules to extract mentions of causal
events. Each rule follows the template of ¡Pattern, Con-
straint, Priority¿, where Pattern is a regular expression con-
taining a selected connector, Constraint is a syntactic con-
straint on sentences to which the pattern can be applied, and
Priority is the priority of the rule if several rules are matched.
For example, we use the pattern “[cause] leads to [effect]”
to extract the causal relation between two events.

3.2.2. SUPERVISED CAUSALITY EXTRACTION

Though unsupervised method requires little human efforts,
it usually extracts some extra useless words. For example,
for the sentence shown in Figure 4, ”According to the xx
times report on” is redundant for constructing event evolu-
tionary graph. To extract precisely, we conduct supervised
causality extraction. As illustrated in Figure 5, we use Bert
and BiLSTM+CRF model to extract causal relations. Lan-
guage model pre-training has shown to be very effective for
learning universal language representations by leveraging
large amounts of unlabeled data. Some of the most promi-
nent models are ELMo (Peters et al., 2018), GPT (Radford
et al., 2018), and BERT (Devlin et al., 2018). BERT uses
the bidirectional transformer architecture. There are two
existing strategies for applying pre-trained language models
to downstream tasks: feature-based and fine-tuning.
In this paper, we annotate each token in a sentence with
following tags: B-cause, I-cause, B-effect, I-effect and O.
The tag “B-cause” refers to the beginning token of the cause
event and each rest token in the cause event is represented by
“I-cause”. The tag “O” refers to the normal token which is
irrelevant with causality. We feed the hidden representation
for each token i after BERT as the input layer of BiLSTM.
These hidden representations can be viewed as semantic
features learnt from Bert model. The output representation
layer of BiLSTM is then fed into the classification layer to
predict the causal tags. The predictions in the classification
layer are conditioned on the surrounding predictions by us-
ing the CRF method.

However, though the classical BERT+BILSTM+CRF
model is strong for many natural language processing task,
it was originally designed for NER (Named Entity Recog-
nition) task. It does not consider the special attributes of
event. Therefore, we make a small improvement in order to
extract events.

Figure 5. Classical BERT+BILSTM+CRF model for causality ex-
traction.

In our observation, events usually contains some frequently
patterns regarding to the part of speech (POS). For example,
an event is composed of ”nouns + verbs” or ” nouns + adjec-
tives”. According to this, besides the embeddings generated
by BERT, we further learns embeddings for each part of
speech. We utilize jieba to conduct POS tagging, which
outputs 25 categories of POS. For each category, we learn
a d-dimensional vector ci. The corresponding ci for each
token forms a matrix C ∈ Nn×d. We denote embeddings
obtained by BERT as B ∈ Nn×D. We concatenate them
and get joint embedding matrix J = [B,C] ∈ Nn×(D+d).
J is then fed into the BILSTM+CRF model. This process
is shown in Figure 6. The learning of ci is conducted by a
two-layer MLP. The inputs are one-hot vectors. It can be
represented as

ci = Wc2(Wc1conehoti + b1) + b2.

3.2.3. ACTIVE TRAINING FOR SUPERVISED CAUSALITY
EXTRACTION

Since labeling a large number of cause-effect pairs clearly
does not scale, we adopt active learning as a more guided
approach to select examples to label so that we can econom-
ically learn an accurate model by reducing the annotation
cost. It is based on the premise that a model can get better
performance if it is allowed to prepare its own training data,
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Table 1. Entity Prediction on YAGO11K for transductive learning
Stats. Mean Rank Hit @10

tail head tail head
TransE (Bordes et al., 2013) 504 2020 4.4 1.2
TransH (Wang et al., 2014) 354 1808 5.8 1.5
HolE (Nickel et al., 2016) 1828 1953 29.4 13.7

t-TransE (Jiang et al., 2016) 292 1692 6.2 1.3
HyTE (Dasgupta et al., 2018) 110 1069 34.9 13.3

Ours-strategy3-1 219 962 34.3 17.5
Ours-strategy3-2 137 976 35.8 17.5

Figure 6. Improved BERT+BILSTM+CRF model for causality ex-
traction.

by choosing the most beneficial data points and querying
their annotations from annotators. We propose an uncer-
tainty and high confidence sampling strategy (UCS) to select
samples which can improve model effectively. The iterative
active learning algorithm is shown in Algorithm 1.

4. Experiment
4.1. Experiment for Evolving Knowledge Graph

Learning

We evaluate our model and compare with different state-
of-the-art baselines based on Link prediction. Evaluation
metrics used are same as that of the traditional KG embed-
ding method for link prediction task.

4.1.1. DATASETS

In our experiment, we evaluate our method on two datasets:
a YAGO dataset (traditional knowledge graph) as well as a

Algorithm 1 UCS Active Training Algorithm for efficient
supervised causality extraction

Input: unlabeled dataset D, test dataset T , model f ,
human labeling H, the number of human labeling samples
in each iteration K;
Output: model f̂ , predict score S
procedure
i← 0
D0 ← random select(D,K)
L0 ← H(D0)
D ← D −D0

f̂ , fs← train test(f, L0, T )
repeat
Di+1 ← D(Top(Si, αK)) ∪ D(Bottom(Si, (1 −
α)K))
Li+1 ← H(Di+1) ∪ Li
D ← D −Di+1

f̂ , fs← train test(f, Li+1, T )

S ← f̂(D)
until fs not improves in n step
end procedure

financial event evolutionary graph (FEEG) dataset built by
ourselves.
YAGO11K: In the YAGO3 knowledge graph (Mahdisoltani
et al., 2013), some temporally associated facts have meta-
facts as (#factID, occurSince, ts), (#factID, occurUntil, te).
The total number of time annotated facts containing both
occursSince and occursUntil are 722,494. Out of them, we
selected top 10 most frequent temporally rich relations. In
order to handle sparsity, we recursively remove edges con-
taining entity with only a single mention in the subgraph.
This ensures a healthy connectivity within the graph. Fi-
nally, we obtain a purely temporal graph of 20.5k triples and
10,623 entities by following this procedure. Additionally,
for inductive learning, we select 10k triples from 1800 to
1986 as training set, 5k triples from 1987 to 2004 as testing
set. We randomly split 10% of the training set as validation
set.
FEEG: This dataset is built by ourselves using the pipeline
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Table 2. Entity Prediction for inductive learning
YAGO11K

Stats. Mean Rank Hit @10
tail head tail head

TransE (Bordes et al., 2013) 1737 2845 15.70 6.78
HyTE (Dasgupta et al., 2018) 1573 2608 16.78 8.21
EvolveKG (Liu et al., 2019) 1687 2623 17.14 6.78

Ours-strategy3-1 1576 2589 16.80 9.40
Ours-strategy3-2 1559 2599 16.88 9.56

FEEG
TransE (Bordes et al., 2013) 31708 33329 0.21 0.06

HyTE (Dasgupta et al., 2018) 31644 33103 0.17 0.00
EvolveKG (Liu et al., 2019) 32686 2623 0.25 0.20

Ours-strategy3-1 29335 29686 0.31 0.26
Ours-strategy3-2 28978 29973 0.34 0.26

described in subsection 3.2. Each quadruple maintains the
form of (cause, relation, effect, timestamp). Here the
relation only has one type: cause-effect relation. During our
construction, we extract totally 609,871 entities and 467,479
quadruples. Limited by the computing power, we only use a
subset of it in our experiment. The training set contains 30k
quadruples ranging from 2012 to 2017 while the testing set
contains 5k quadruples from 2017 to 2018. We randomly
split 20% of the training set as validation set.

4.1.2. IMPLEMENTATION DETAILS

For all the methods, we have kept batch size b = 50k on both
the datasets. Because of the limited time and computing
power, we have not carefully tuned the hyper-parameters.
The dimensions of the embeddings are set as 128. The
margins for all the methods are set as 10. We use SGD for
optimization and the learning rate is set as 0.0001.

4.1.3. PERFORMANCE

Transductive learning: Following (Dasgupta et al., 2018),
we first conduct transductive learning on the YAGO11K
dataset to prove that our method is also better than previous
methods when the time period of training set intersects the
time period of testing test. We evaluate the performance on
entity prediction as well as relation prediction as shown in
Table 1 and Table 3. ”Our-strategy3-1” and ”Our-strategy3-
2” denote the methods of implementing strategy 3 on strat-
egy 1 and strategy 2 respectively. From the results we
can see that our methods outperform the baseline models in
most metrics which indicates the effectiveness of our meth-
ods. We can find that our methods gain great improvement
on the performance of head prediction, which might be the
effect of strategy 3.
Inductive learning: We conduct inductive learning on two
datasets to validate our design. The performance of entity

Table 3. Relation Prediction on YAGO11K for transductive learn-
ing

Stats. Mean Rank Hit @1
TransE (Bordes et al., 2013) 1.7 78.4
TransH (Wang et al., 2014) 1.53 76.1
HolE (Nickel et al., 2016) 2.57 69.3

t-TransE (Jiang et al., 2016) 1.66 75.5
HyTE (Dasgupta et al., 2018) 1.23 81.2

Ours-strategy3-1 1.23 84.1
Ours-strategy3-2 1.33 81.8

Table 4. Relation Prediction on YAGO11K for inductive learning
Stats. Mean Rank Hit @1

TransE (Bordes et al., 2013) 3.24 47.1
HyTE (Dasgupta et al., 2018) 3.48 35.1
EvolveKG (Liu et al., 2019) 3.08 38.4

Ours-strategy3-1 2.94 38.2
Ours-strategy3-2 2.98 38.5
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prediction is shown in Table 2. Since there is only one type
of relation in FEEG dataset, we only conduct relation predic-
tion on YAGO11K dataset, whose results are shown in Table
4. The performance shows that our design outperforms some
of the start-of-the-art methods.

4.2. Experiment for causality extraction

Before constructing the temporally aware event evolutionary
graph, we need to validate the effectiveness of the classi-
cal BERT+BILSTM+CRF model as well as the improved
BERT+BILSTM+CRF model. We manually annotate 120
sentences as testing set and evaluate the model after active
training. The results are shown in Table 5. From Table 5 we

Table 5. Performance of BERT+BILSTM+CRF model on causality
extraction.

STATS. PRECISION RECALL F1-SCORE

CLASSICAL 61.05 80.11 69.29
IMPROVED 65.31 84.53 73.68

see that our design of adding POS embeddings are useful
for causality event pairs extraction.

5. Visualization
5.1. Rendering methods

For the final work to present our result in a proper way, we
determined some method on displaying our database FEEG.
As the traditional KG is represented as network formed from
triples, we firstly establish the base net with triple informa-
tion: Source Node = source entity, Target Node = objection
entity, Edge = relationship.
As for nodes, different nodes have different text contents,
and we leave the detailed contents as node label. For edges,
we make the detailed relationship name as edge label (or
sometimes we can change the edge shape for conspicuous-
ness). As there is only one relationship (causality) in our
database, we just to draw a single type of edge.
At last, to show the time evolve of KG, we use different
color onto edges and source nodes to label the time element.

5.2. Visualization Results

A common economic issue may be generated from several
former changes. In end of 2017, gold price in US had a rush
boosting, and many texts in our database have mentioned
the problem. So we take information net centering with
it(from time 2016-2017), and the result is shown in figure 7.
The net snapshot seems reasonable, as it obeys the actual
life rules: One issue is caused by many others, and from
one as the root , we can get a huge relation tree.
To take a larger view of FEEG, we extract about 800 entities

with about 560 relations from the database and use Gephi
to draw a relationship net. Here we use some way to take
quarts to make the edges be as many as possible, just to
make the result better. The result is shown in figure 8.
Figure 9 shows the detail of it.
However, after drawing the overview of common data, it’s
easy to observe that FEEG data tends to make small clusters
usually with 2 or 3 nodes. This discover indicates that the
whole 5k quadruples in FEEG also tend to group into small
clusters. As we said in this paper before, the sparsity of KG
can lower the efficiency and accuracy of embedding model
method.
After using FEEG, we also draw maps with
YAGO11K(takes one relation only), and the result
shows the same sparsity. It can be indicated that KG data
generated in real world for now tends to get sparse due
to source limit. If we develop more subtle method to get
more information and generate a thick relation map, the
performance of existing experiment about Evolving KG
will be better.

6. Conclusion
This paper introduces our group’s work on Evolving Knowl-
edge Graph (Evolving KG), a structure of knowledge graph
that counts time slot of each record in, showing the evolving
nature of actual relationship network.
We first discuss some existing work that we referred, defin-
ing that in our model each record will be saved into quarts.
Then we compare two methods for Knowledge Graph em-
bedding: Evolving KG and HyTE. We raise three strategies
for improving the method performance of HyTE.
Then we go through the whole process to construct a tempo-
rally aware event evolutionary graph, mentioning different
methods of each step and we name it FEEG. Then we take
experiments on YAGO11K and FEEG datasets to exam our
improvement strategies. The result indicates the feasibility
of our thoughts.
And at last we make visualization of our database to ob-
serve the character of it. The result shows that KG database
generated for now is usually node-sparse, causing lower
performance in different embedding methods.
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Figure 7. The reasoning knowledge graph drawn centering with ”Gold price boosts” in late 2017.

Figure 8. The knowledge network with about 800 entities drawn
from FEEG.

Figure 9. Detailed view for figure8
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the interplay between individuals’ evolving interaction
patterns and traits in dynamic multiplex social networks.
IEEE Transactions on Network Science and Engineering,
3(1):32–43, 2016.

Nickel, M., Tresp, V., and Kriegel, H.-P. A three-way model
for collective learning on multi-relational data. In Icml,
volume 11, pp. 809–816, 2011.

Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E.
A review of relational machine learning for knowledge
graphs. Proceedings of the IEEE, 104(1):11–33, 2015.

Nickel, M., Rosasco, L., and Poggio, T. Holographic embed-
dings of knowledge graphs. In Thirtieth Aaai conference
on artificial intelligence, 2016.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. Deep contextualized
word representations. arXiv preprint arXiv:1802.05365,
2018.

Radford, A., Narasimhan, K., Salimans, T.,
and Sutskever, I. Improving language un-
derstanding by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf, 2018.

Socher, R., Chen, D., Manning, C. D., and Ng, A. Rea-
soning with neural tensor networks for knowledge base
completion. In Advances in neural information process-
ing systems, pp. 926–934, 2013.

Talukdar, P. P., Wijaya, D., and Mitchell, T. Acquiring
temporal constraints between relations. In Proceedings
of the 21st ACM international conference on Information
and knowledge management, pp. 992–1001, 2012a.

Talukdar, P. P., Wijaya, D., and Mitchell, T. Coupled tempo-
ral scoping of relational facts. In Proceedings of the fifth
ACM international conference on Web search and data
mining, pp. 73–82, 2012b.



Project Report for EE447

UzZaman, N., Llorens, H., Derczynski, L., Allen, J., Ver-
hagen, M., and Pustejovsky, J. Semeval-2013 task 1:
Tempeval-3: Evaluating time expressions, events, and
temporal relations. In Second Joint Conference on Lex-
ical and Computational Semantics (* SEM), Volume 2:
Proceedings of the Seventh International Workshop on
Semantic Evaluation (SemEval 2013), pp. 1–9, 2013.

Wang, Y., Zhu, M., Qu, L., Spaniol, M., and Weikum, G.
Timely yago: harvesting, querying, and visualizing tem-
poral knowledge from wikipedia. In Proceedings of the
13th International Conference on Extending Database
Technology, pp. 697–700, 2010.

Wang, Z., Zhang, J., Feng, J., and Chen, Z. Knowledge
graph embedding by translating on hyperplanes. In
Twenty-Eighth AAAI conference on artificial intelligence,
2014.

Welch, D. A., Woehl, T. J., Park, C., Faller, R., Evans, J. E.,
and Browning, N. D. Understanding the role of solvation
forces on the preferential attachment of nanoparticles in
liquid. ACS nano, 10(1):181–187, 2016.

Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L. Embed-
ding entities and relations for learning and inference in
knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

Yih, W.-t., Richardson, M., Meek, C., Chang, M.-W., and
Suh, J. The value of semantic parse labeling for knowl-
edge base question answering. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 201–206, 2016.

Zheng, Z., Si, X., Li, F., Chang, E. Y., and Zhu, X. Entity
disambiguation with freebase. In 2012 IEEE/WIC/ACM
International Conferences on Web Intelligence and In-
telligent Agent Technology, volume 1, pp. 82–89. IEEE,
2012.
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