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1 Introduction∗

In this project, we applied the aspect of structural entropy to analysis the structure of knowl-
edge. We conducted data mining on the citation network of a large number of academic papers.
The description of the knowledge structure has gone through three stages from qualitative to quan-
titative. The most direct is to use Nebula to visualize this reference relationship network, then
for the graph structure of this relationship network, we use a series of graph analysis methods to
extract a tree structure of a skeleton tree from it, finally, for the obtained skeleton tree, we apply
the idea of structural entropy to this skeleton tree. For each node in the tree, we can calculate the
tree entropy and point entropy to reflect its influence on the entire field and its own Amount of
knowledge.

2 Algorithm

2.1 Skeleton tree†

The conversion from graph to tree is actually a process of cutting edges. We use a series of
graph analysis methods to cut off the extra edges, so as to retain those edges that really imply the
inheritance and development of knowledge.

2.1.1 Laplacian analysis

For the method of skeleton tree extraction, it is based on graph analysis. Firstly, we can get
the normalized self-loop Laplacian matrix of this graph.

Lregular = D−1/2(D −W )D−1/2 (1)

and then find its eigenvectors, and use the distance between the two eigenvectors to represent the
distance between the two nodes.

2.1.2 Dijkstra method

After this step, our original graph structure has changed from an unweighted graph to a
weighted graph. Its edges have lengths. Using Dijkstra’s method, if heap optimization is used, it
can be in O(n2 log n) time. The shortest path length between each two nodes is calculated internally.
Of course, there may be no path between the two nodes. In this case, we use the longest step length
maxdistance multiplied by the average path step averagestep as the approximation distance
between them, which is actually a very long distance.

dij =

{
Dijkstra(G, i, j), if there is path between i and j

maxdistance ∗ averagestep, else
(2)
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2.1.3 Reduction degree

After the calculation of the shortest path between nodes, we can calculate the degree of reduc-
tion of each node to the entire network. We use the concept of degree of reduction to express the
relationship between two objects. If two points on an edge have different degrees of reduction to the
network Large, then we can think that this edge expresses the context structure of these knowledge
to a lesser extent, that is, it should be preferentially cut during the edge cutting process. Then
the degree of reduction of each point to the network is actually the sum of the degree of reduction
of this point relative to all other points, so how do we calculate the degree of reduction between
points, using the Dijkstra result just calculated, to calculate i to the degree of reduction of j, we
find the j reference article collection jk, and sum the shortest distance of each article in i to jk as
the degree of reduction of i to j.

Rij =
∑
jk

disijk , RNi =
∑
j 6=i

Rij, ∆RNij = |RNi −RNj| (3)

2.1.4 Edge-cutting

we cut off the extra edges whose corresponding ∆RNij value is larger until the number of edges
is equal to the number of nodes minus 1 through this set of processes, and what we left behind is
the structure of the skeleton tree we obtained.

]edges = ]nodes− 1 (4)

2.2 Knowledge entropy∗

We want to use entropy as the measure of knowledge. Entropy comes from physics, which is a
thermodynamic quantity representing the unavailability of a system’s thermal energy for conversion
into mechanical work, often interpreted as the degree of disorder or randomness in the system. In
our paper citing network, a paper’s knowledge value reflects how much it influences the whole
academic network. In other words, if this paper isn’t published, how many other works cannot be
produced. This is the target that we want to mine.

The depict of knowledge entropy starts from Shannon information entropy. This is the theo-
ritical base of our knowledge entropy which develops the initial thinking from information entropy.
From this on, we draw on the experience of structure entropy [6] [1] and propose the calculation of
subtree entropy, inter-knowledge entropy and node entropy.

2.2.1 Entropy basis

The theory of entropy in information starts from Shannon entropy. Suppose there are n ele-
ments in set S, each element Si has the probility of pi to appear, then the entropy of S is

H(S) = −
n∑
i

pi · log(pi) (5)

This equation is the minimum encoding length of S, it can be understood by using least knowledge
value to summarize all knowledge in S. However, the shortcoming of Shannon entropy is that set is
a unordered and non-structural data structure [10]. It didn’t consider the inner relationship among
elements, neither did it transfer to graph structure.
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Based on these shortcomings, Li et al [6] proposed structure entropy to migrate Shannon
entropy on graphs. Starting from a skeleton tree, structure entripy H(G) is defined

H(G) = −
∑
α∈T

gα
2m

log
Vα
Vα−

(6)

where T is the skeleton tree extracted from arbitrary graph G, gα is the cut set of all nodes in
sub-tree whose root is α, m = ||V (G)||, Vα and Vα− is the number of nodes in sub-tree whose root
is α and parent node of α, respectively.

Note that the structure entropy is defined on skeleton tree, rather than graph, this is the reason
why we need to propose the algorithm of extracting skeleton tree from initial paper citing graph.

2.2.2 Sub-tree entropy

Sub-tree entropy is designed to measure the influence of a paper to the whole academic network,
in our project, to the whole Cora dataset. Thus, a paper’s sub-tree entropy should consider the
sub-tree whose root is the paper. The algorithm of sub-tree entropy is based on structure entropy.
Since we want to measure the whole subtree, we preserve the initial form of structure entropy and
define sub-tree entropy as

HT (α) = − gα
2m

log
Vα
Vα−

(7)

The notations keep same as equation 6, and we omit here. We can further consider sub-tree
entropy as a paper’s uncertainty to whole academic dataset. A bigger sub-tree entropy represents a
bigger influence to this academic field. We also emphasize a misunderstanding here: the definition
and physical meaning of sub-tree entropy may fuse people that the number of nodes in a sub-tree
has positive correlation with sub-root entropy. In fact, the most import parameter is the cut set of
gα, but not Vα. The following experiments will also show that some papers with small number of
nodes in sub-tree also have rather high sub-tree entropy.

2.2.3 Inter-knowledge entropy

The inter-knowledge entropy is defined in the range of papers with same parent node in skeleton
tree. Since they are from the same parent node, they should have some knowledge in common, and
here we want to extract this value. The definition is

I(a, b) = − gab
4m

log
VaVb
V 2
ab−

(8)

where gab is the cut set of T (a) ∨ T (b), and Vab− is the common parent node of paper a and b.
Our proposed inter-knowledge entropy satisfies two intuitively correct properties:

• Symmetry: I(a, b) = I(b, a)

• Self-symmetry: I(a, a) = HT (a), where HT (a) is the sub-tree entropy of paper a.

The proof of them is easy and I omit it here. In physical meaning, inter-knowledge entropy depicts
the correlation between two papers a and b, since this correlation is defined by their jointly parent,
we only define this entropy among child nodes of an arbitrary node. Nodes with different direct
parent node do not have this inter-knowledge entropy. In real calculation, this definition is enough
since we have already considered the correlation among nodes with different parent nodes in sub-
tree entropy. And we’ll show in node entropy that the inter-knowledge entropy is just an auxiliary
value.
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2.2.4 Node entropy

Based on sub-tree entropy and inter-knowledge entropy, we can define node entropy, which
is the measure of knowledge value of any given node a. This calculation starts from a’s sub-tree
entropy HT (a), and we delete all sub-tree entropy of a’s child nodes, because these entropy doesn’t
directly belong to a. Besides, purely deleting these entropy seems rigid and doesn’t consider the
correlation among these papers. To fix this problem, we add the sum of inter-knowledge entropy
among all nodes whose parent is a. This is because we regard the correlation among children papers
defined by the parent paper. Thus, in formulation, the calculation of node entropy is

HN(a) = |HT (a)−
∑

ai∈T (a)

HT (ai) +
∑

ai∈T (a)

∑
aj∈T (a),j 6=i

I(ai, aj)| (9)

In conclusion, we compare the relationship and difference among three entropies above. Sub-
tree entropy imitate the calculation of structure entropy, depicting how much influence a paper
to the whole academic field. Inter-knowledge is defined among nodes with same direct parent
node, measuring the correlation of a paper pair. Node entropy considers sub-tree entropy and
inter-knowledge entropy together to calculate the real value of knowledge for a given paper.

3 Experiments

3.1 Initial clustering in Cora∗

To measure the knowledge embedded in a graph, we first tried to parse the clustering or
classification features. We think a good measurement should at least correctly and clearly classify
papers from different academic fields in cora [8]. Under this motivation, we first extract three naive
features from initial graph: keyword feature, citing feature and spectral clustering feature. Keyword
features come from cora dataset itself, using 0/1 to represent a keyword’s appearance and packaged
to a vector. Citing feature is the citing relationship of papers in cora dataset, using 0/1 to represent
whether this paper cites or is cited. Spectral clustering feature is initially from citing feature, but
using spectral clustering algorithm [9] to get a Laplace matrix, and we treat each row as feature. To
visualize these features and check their clustering effect, we use t-SNE as a visualization in scatter
graph. The results are shown in 1. Obviously these naive features are not what we want, and we
need more robust methods to mine knowledge embedded in graphs deeply.

(a) Keyword feature visualization. (b) Citing feature visualization. (c) Spectral clustering feature visu-
alization.

Fig. 1: Different naive features visualized using t-sne algorithm. Features are messy and many
papers in different academic fields mix together. It seems we must use more powerful and complex
algorithms to further extract and analysis these features.
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Fig. 2: Cora Nebula.

3.2 Nebula of Cora∗

The academic papers we visualized with gephi cited the nebula of the network. It is actually
a very qualitative depiction of the knowledge structure. The nebula drawn is largely dependent on
the visualization method of gephi. On the whole, it shows a very Approximate result.

3.3 Skeleton tree extraction†

After we cut off the extra edges through the skeleton tree extraction processes, what we left
behind is the structure of the skeleton tree we obtained. Compared to the original nebula map, the
description on the structure of knowledge and the development of knowledge are much clearer.

3.4 Sub-tree entropy based tree‡

From the skeleton tree extracting algorithm, we have already extracted a skeleton tree from
initial cora dataset graph. However, all nodes in tree are equivalent and we cannot focus on the
stress. To stress the main points, we use adjust the radius of each node according to its sub-tree
entropy. A node with higher sub-tree entropy will have larger radius. Since the number of nodes is
large, and an overall image will be nasty and misunderstanding, we only capture some screenshots
here to emphasize the nodes with higher sub-tree entropy. The visualization result is like figure
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Fig. 3: Skeleton tree, where different colors replace different fields, the clustering property is clearly
shown.

(a) Genetic algorithms. (b) Neural networks. (c) Rule learning. (d) Probabilistic methods.

Fig. 4: Local screenshots of skeleton tree, with each node’s radius corresponding to its sub-tree
entropy. The color of the emphasized node means different academic fields, which are shown in the
sub-title of each image.
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4. The result show that a big node will usually have a cluster of nodes in same academic field
surrounding it. The cluster is the sub-tree of the node with high sub-tree entropy.

To quantitatively analyse the correctness our sub-tree entropy algorithm, we labeled each node
with its title, whose font size also has positive corresponding to its sub-tree entropy. Thus, we can
search the real citing times in google, and check whether these papers with high sub-tree entropy
are cited for rather many times. The visualization and citing times result are shown in figure 5.
Note that the structure of tree is different from figure figure 4, because we used a new layout in
gephi [3] software to thin out nodes so that we can clearly see each title.

(a) [7] Time cited: 2514 (b) [2] Time cited: 1221

(c) [4] Time cited: 519 (d) [5] Time cited: 16055

Fig. 5: Local screenshots with title labeled on the nodes. We have also searched on google scholar
for the time cited of each paper with extremely high sub-tree entropy. All emphasized nodes in
images above are with rather high time cited.

3.5 Relationship of knowledge entropy§

In this experiment, we want to check the relationship between sub-tree entropy and node en-
tropy of a given node. From previous analysis, sub-tree entropy and node entropy depict knowledge
entropy from two different perspective. Intuitively, a paper that produces huge effect to the whole
academic field should also have informative knowledge itself. To check this point, we use scatter
graph to study the relationship between these two kinds of entropy. In our experiment, we found
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that the value of entropy has big range from 10−7 to 103, which is unreadable in a normal coordi-
nate. To normalize this range, we use log-log scale coordinates and project each node in it. The
result in figure 6 shows the approximatedly positive correlation between sub-tree entropy and node
entropy.

Fig. 6: The scatter graph of each paper with corresponding node entropy and sub-tree entropy. The
tendency of this graph shows the positive relation between these two kinds of entropy.

3.6 Relationship of level and entropy¶

In this experiment, we want to study the relationship between a node’s level in skeleton tree
and its knowledge entropy, including sub-tree entropy and node entropy. We first calculated the
average sub-tree entropy and node entropy in each level of skeleton tree, then use a line chart to
show the result in figure 7.

However, as we have mentioned before, value of entropy varies a lot, and an outlier point may
unpredictably influence the average value. This is the reason why line chart in figure 7 fluctuates
terribly. For more precise results, we still use log-scale coordinate with scatter graph, and draw
each data point on the figure. Figure 8 shows this result and make some illustration.

4 Conclusion and future work‖

In this project, we depict knowledge from the perspective of graph structure. We take cora
dataset as the initial academic network graph, then proposed a skeleton extracting algorithm based
on spectral clustering. After extracting the skeleton tree, we further calculated the sub-tree entropy,
inter-knowledge entropy and node entropy of each paper in cora dataset. Finally, we did a series
of experiments on this graph to verify our hypothesis and dig some relationship between values in
our work. The experiment results show that our algorithm makes sence and satisfy our intuition in
many aspects.

However, this work is not perfect. Our algorithm can only work on a given graph, and no
changes can be considered as time goes on. If you want an online version algorithm, you can only
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Fig. 7: Relationship between average knowledge entropy and level. The average entropy is calculated
in each level and no weight.

(a) Node entropy - level scatter graph. (b) Sub-tree entropy - level scatter graph.

Fig. 8: These two figures show the scatter graph with relationship between entropy and level in
skeleton tree. The upper bound of entropy has the tendency to fall as the level increases. In other
words, the level in skeleton tree determines the superior limit of entropy. If a paper wants to produce
more influence to the whold academic field, it must be near the initial paper of this field in skeleton
tree.
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redo the whold story again. Thus, it misses the function of predicting a paper’s development.
Besides, our CPU-based method cannot deal with graphs having more than 10,000 nodes due to
limit of memory. Moreover, we didn’t consider the content of a paper, which is also an essential
index in evaluating knowledge.

For future work, we want our algorithm to be migrated to other networks, including social
network, market network and rumor network, etc. Besides, since the data structure of graph is the
most common in human real life, we want this algorithm to be more systematical and general, but
not designed only for this task.
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Table. 1: Division of work
Model & report
Skeleton tree part Ding Fangyu
Structural entropy part Fu Haoyuan
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