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Abstract

We consider a practical phenomenon in the influencce maximization problem,1

where a fraction of the initial nodes are not successfully activated. Such a phe-2

nomenon would deteriorate the final influence of the selected initial nodes. To3

overcome the mentioned problem, we study the objective of robust nodes selection4

for the influence maximization, i.e, how to choose a set of initial nodes to maximize5

the expected final influence when some of them may be unactivated. We then6

propose a robust initial node selection (RNS) algorithm with a fast and accurate7

influence estimation method (IEM). In particular, RNS use IEM, which computes8

the activation probability of each node and estimates the expected influence, to9

ouput a robust seed by selecting some influencial nodes and a node seed with10

greate total influence. We extensively evaluate our algorithms over the facebook11

social network. Evaluation results demonstrate that IEM can accurately estimate12

the influence and RNS significantly outperforms the conventional greedy algorithm13

in terms of final influence when a fraction of initial nodes are not activated.14

1 Introduction15

Nowadays, a social network, which denotes the relationships and interactions within a group of16

individuals, plays a fundamental role as a medium for the spread of information, ideas, and influence17

among its members [Kempe et al.(2015)Kempe, Kleinberg, and Tardos]. Applications such as18

Facebook, Twitter, and Wechat allow people to connect and communication with each other at19

anytime and anywhere. As a consequence, viral marketing [Bass(2004), Steffes and Burgee(2009),20

Domingos and Richardson(2001), Mahajan et al.(1993)Mahajan, Muller, and Bass, Richardson and21

Domingos(2002)] via social network becomes increasing popular and significant for the industrial22

circle.23

To handle the problem, [Kempe et al.(2015)Kempe, Kleinberg, and Tardos] formulates the influence24

maximization (IM) problem and adopts two basic models, independent casade (IC) and linear25

threshold (LT), to model the influence diffussion in the social network. In particular, the problem is,26

given a social network, select k most influencial nodes to maximize the final influence size under the27

diffussion model, where k denotes the size of the initial node seed.28

However, in the real viral marketing, we have to consider the following practical characteristics:29

(1) Unsuccessful initialization: when some of the initial clients in the viral marketing have poor30

experience with the new products, they may not be willing to spread the information. That is, a31

fraction of the initial nodes may not be successfully activated. (2) Decreasing diffusion efficiency: as32

the information diffusion progresses, the diffusion efficiency decreases. For example, client A is an33

initial node, B is an out-neighbour of A, and C is an out-neighbour of B. For client B, the final source34

of information about the new product is A, who is his friend. But for C, the final source is a friend of35

his friend, whose trust-level is less than C’s “direct" friends.36

Such two characteristics are not including in the existing works. In what follows, we propose a new37

max-min objective fucnction to model the unsuccessful initialization and make a new assumption38
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Figure 1: Influence Maximization Problem (Copied from the course PPT).

about information diffussion to model the decreasing diffusion efficiency in IC problem. The max-min39

objective aims to find such a robust initial seed: the successfully activated nodes have great influence40

even in the “worst" case, i.e, the most influencial nodes are not activated. And the new information41

diffussion assumption has covered the decreasing diffusion efficiency by introducing an decreasing42

coefficient.43

Under our objective and diffussion model, we propose Robust Node Selection (RNS) algorithm,44

which adopts greedy strategy and a new influence estimation method (IEM). We first prove that45

the influence that our approach estimation is quite close to the real influence expectation. We then46

analyse the approximation ratio of RNS. Finally, we evaluate IEM and RNS over the facebook dataset.47

Evaluation results demonstrate the accuracy of IEM and the effectiveness of RNS with a remarkable48

performance improvement compared with the conventional greedy algorithm.49

2 Problem Formulation50

We consider an influence maximization problem based on the independent casade (IC) model. Given51

a social network G(V,E), we need to choose a robust initial seed S (|S| ≤ k) to maximize the52

expected number of influenced nodes even in the case that at most m (m ≤ k − 1) nodes refuse to53

diffuse positive information.54

We can formalize it into a max-min optimization problem:55

max
S⊆V,|S|≤k

min
H⊆S,|H|≤m

F (S \ H) , (1)

where F (X ) denotes the expected number of influnced nodes when the initially activative seed is X .56

Namely, we call the optimization problem robust nodes selection. To better simulate the information57

diffusion, solve the problem, and make approximation analysis, we make the following assumptions.58

Assumption 1 (Independent Casade). The information diffuses based on the independent casade59

model. Starting with a set of inital active nodes, the information diffusses in descrete steps. At each60

step t, the newly activated node (say, node u) independently activates its out-neighbor (say, node v)61

with some probability p(u, v)t.62

Assumption 2 (Decreasing Diffusion Efficiency). As the information diffusion progresses, the63

probability of successful transmission decreases exponentially. That is, p(u, v)t is not equal to64

p(u, v)t−1, but satisfies p(u, v)t = δ ∗ p(u, v)t−1, where δ < 1.65

Assumption 1 is based on the independent casade model, and Assumption 2 is based on the fact that66

the diffusion efficiency decreases as the information diffusion progresses, as introduced in Section 1.67

We then formulise the information diffusion process. In the r-th step, each newly activated node u68

independently activates its out-neighbor v with probability δr−1p(u, v)0, where p(u, v)0 = p(u, v)69

is the original probability of u succesfully activating v, which is given as the information of the social70

network.71

3 Algorithm Design72

In this section, we propose a initial nodes selection algorithm for the robust nodes selection problem.73

The basic idea is that we separate the optimization into two parts: the first part is to select the74
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Algorithm 1 Robust Node Selection (RNS)

1: Input: Social influence graph G(V,E), parameter k,m, influence estimation function F̂ (X ).
2: Output: Initial seed S.
3: S1,S2 ← ∅;
4: while |S1| < m do
5: s← arg maxs∈V−S1 F ({s});
6: S1 ← S1 ∪ {s};
7: end while
8: while |S2| < k −m do
9: s← arg maxs∈S−S1−S2 F (S2 ∪ {s});

10: S2 ← S2 ∪ {s};
11: end while
12: S = S1 ∪ S2;

influencial nodes, denoted as S1, and the second part is to select a node seed with great total influence,75

denoted as S2. The key idea is that if some of the nodes in S2 are unactivated, the influencial nodes in76

S1 will replace them, which makes up for the influence loss. In particular, we adopt a greedy strategy77

in each part.78

The algorithm is presented in details in Algorithm 1. In this part (from lines 4 to 7), we continuesly79

select an element with the largest influence until m elements have been selected. And set S280

approximate the best set S − S1 with S1 removed from S. In this part (from lines 8 to 11), we81

continuesly select an element with the largest marginal influence until k −m elements have been82

selected. And the selction of S2 is the conventional greegy algorithm, which will obtian a node seed83

with great total influence. Finally, after S1 and S2 being selected, the algorithm will outputs a robust84

initial node seed S = S1 ∪ S2.85

4 A Fast Influence Spread Estimation86

To implement Algorithm 1, the main challenge is how to design the influence estimation function87

F̂ (X ). Many existing works estimates the influence using Monto Carlo simulation, which may repeat88

the indepedent casade process for thousands of time. To make a fast and accurate estimation, in89

this section, we propose a new influence estimation method (IEM). Instead of making Monto Carlo90

simulation, we estimate the probability that each nodes being activated. The final expected influence91

is the sum of the activation probability over all nodes. We first show the accurate expected influence92

calculation method, and then show that we could only focus on the first few steps to give a fast93

estimation of the expected influence. To speed up the estimation, we only calculate the first r0 steps.94

And in Theorem 1, we shows that for each node, the difference between the accurate activation95

probability and the estimated activation probability cound be bounded.96

4.1 Expected Influence97

In this section, we introduce the methods of calculating the accurate probability of each node being98

activated. Let A0 denote the initially active node seed, and Irv denote the probability of node v being99

activated at exactly the r-th step. First we initialize all I0
v :100

I0
v =

{
1, v ∈ A0

0, v /∈ A0
(2)

When r ≥ 1, for each node v ∈ V − S, we have101

Irv =

(
1−

r−1∑
i=0

Iiv

)1−
∏

u∈Γ(v)

(
1− δr−1Ir−1

u p (u, v)
) , (3)

where Γ(v) denotes the in-neighbours of v. The first part calculates the probability that v has not been102

activated at the first (r − 1) steps, and the second part calculates the probability that v is activated at103

the r-th step by its in-neighbours, which was activated at exactly the (r − 1)-th step.104
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Algorithm 2 Influence Estimation Method (IEM)
1: Input: Social influence graph G(V,E), initial node seed S, decreasing coefficient δ.
2: Output: Estimated infleucne IF .
3: Initialize Irv with for each node v step r(r ≤ t);
4: for Each v ∈ S do
5: I0

v ← 1;
6: end for
7: for r = 1, 2, · · · , t do
8: for Each node v ∈ V do
9: Irv =

(
1−

∑r−1
i=0 I

i
v

)(
1−

∏
u∈Γ(v)

(
1− δr−1Ir−1

u p (u, v)
))

;
10: end for
11: end for
12: IF =

∑t
r=1

∑
v∈V I

r
v ;

So the total probability of node v being activated is105

Pr(v) =

+∞∑
r=0

Irv . (4)

which is the sum of the probability of v being activated at all steps.106

4.2 Influence Estimation Method107

In this section, we propose a new influence estimation method with a error bound based on the108

influence calculation method mentioned in the above section. Instead of calculating the probabilities109

of all steps, we focus on the results coming from the first t steps, and show that the estimated110

probability is close to the accurate probability. The algorithm is presented in details in Algorithm111

2. We calculate the probability that each node v is activated at the r-th step, where r = 1, 2, · · · , t,112

according to equation (3) (from lines 3 to 11), and estimate the final influence (line 12).113

We then prove that the difference between the estimated probability and the accurate probability of114

each node (say, node v) being activated is bounded.115

Theorem 1. When we only calculate the first t steps and Dδt/2−1 ≤ 1, where D is the maximum116

input degree in G(V,E), the difference between the real probability and estimated probability is117

bounded by:118

Pr(v)− Prt(v) ≤ δt+1

1− δ
,

Proof of Theorem 1. When v ∈ S , it is trivial that I1
v ≤ δ0 = 1. Then we focus on the relationship119

between the activated probability of the neighbouring two steps.120

Irv =

(
1−

r−1∑
i=0

Iiv

)1−
∏

u∈Γ(v)

(
1− δr−1Ir−1

u p (u, v)
)

≤ 1−
∏

u∈Γ(v)

(
1− δr−1Ir−1

u p (u, v)
)

≤
∑

u∈Γ(u)

δr−1Ir−1
u ≤ Dδr−1Ir−1,

where Ir−1 = max
u∈V
{Ir−1

u }, so we have Ir ≤ Dδr−1Ir−1. From the recurrence equation, we can121

bound the maximum probability that a node is activated at the r-th step: Ir ≤ Drδr(r−1)/2. So the122

error, which is the probability that a node is activated after the t-th step is bounded:123

error(u) ≤
∞∑

r=t+1

Drδr(r−1)/2 =

∞∑
r=t+1

Drδr
2/2δ−r/2. (5)
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When Dδt/2−1 ≤ 1, we have Drδr
2/2δ−r/2 ≤ δr, and124

error(u) ≤
∞∑

r=t+1

δr =
δt+1

1− δ
t→∞→ 0. (6)

125

5 Approximation Analysis126

In this section, we analyse the approximation ratio of Algorithm 1.127

Theorem 2. Algorithm 1 will output a set A satisfying128

F̂ (A \H∗(A))

F̂ (A∗ \H∗(A∗))
≥ (1− 1

e
)

1

k −m
,

where F̂ (X ) is the influence estimation function, H∗(A) is the worst removal of set A, A∗ is the129

optimal seed, and H∗(A∗) is the worst removal of set A∗.130

Proof Sketch of Theorem 2. We now give the outline of the proof, and details are given in the131

Appendix.132

Lemma 1. For an arbitrary instance of the information diffussion model under Assumptions 1 and 2,133

the resulting estimated influence function F̂ is submodular.134

Lemma 2. Having removed node set A1 from V , Algorithm 1 will choose a set A2, whose estimated135

influence is no less than 1− 1
e of the maximum estimated influence:136

F̂ (A2) ≥ (1− 1

e
) max
S⊆V \A1,|S|≤k−m

F̂ (S).

Lemma 3. We next prove that the maximum estimated influence after removing node set A1 is no137

less than the estimated influence of the optimal seed A∗ with H∗(A∗) removed from it:138

max
S⊆V−A1,|S|≤k−m

F̂ (S) ≥ F̂ (A∗ \H∗(A∗)).

Lemma 4. The estimated influence of A returned by Algorithm 1 with H∗(A) reomeved is no less139

than 1/(k −m) of the estimated influence of A2:140

F̂ (A \H∗(A)) ≥ 1

k −m
F̂ (A2).

Based on the above lemmas, we can derive that141

F̂ (A \H∗(A)) ≥ 1

k −m
F̂ (A2)

≥ 1

k −m
(1− 1

e
) max
S⊆V \A1,|S|≤k−m

F̂ (S)

≥(1− 1

e
)

1

k −m
F̂ (A∗ \H∗(A∗)).

142

Theorem 2 shows that RNS obtains a set of initial nodes, whose influence is (1− 1
e ) 1

k−m times of143

influence of the optimal seed even in the worst removal case. So the seed is actually very robust, no144

matter which m nodes are not activated, it always has a great total influence.145
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Figure 2: Influence Estimation Method Evaluation
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(a) Robust Test with δ = 0.6
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(b) Robust Test with δ = 0.8

Figure 3: Robust Influence Test with Different Decreasing Coefficient δ.

6 Experiments146

In this section, we evaluate our algorithms. Due to the computation constraint of the computer, we147

use a small dataset, which is part of the facebook network and consists of 249 nodes and 407 edges.148

And we randomly allocate a weight p ∈ (0, 1) to each edge.149

Influence Estimatiion Method Evaluation. We first evaluate our influence estimation function.150

Under the setting that the number of steps t = 5, 10, 15, 20 and the decreasing coefficient δ = 0.8, 1.0,151

we compare the estimation result with the experimental result. We use the result of RNS as the152

inital nodes and evaluate the influence estimation method. We first do the influence test for 20 times,153

for each experiment we repeatly execute the information diffussion process under our information154

difussion model for 100 times and calculate the average amount of the final influenced nodes. Each155

dot in Figure 6 denotes a experiment result. We then use IEM to estimate the result, which is displayed156

in Figure 6 in the form of bar. Figure 6 shows that IEM can well approximate the real influence when157

the max step t for estimation is greater than 10.158

Robust Node Selection Evaluation. We then evaluate our robust seed selection algorithm by by159

comparing with the randomly chosen seed and conventional greedy algorithm. We set the size of the160

initial node seed k to 10, the number of unactivated initial nodes m to 2, 4, 6, 8, and the decreasing161

coefficient δ to 0.8. Under each setting, we compare the test average influence for each algorithm.162

In particular, for each initial seed, we randomly remove m nodes from it and make the influence163

test, which is the average influence of 100 information diffussion experiment. We repeat the above164

operations for 5 times, and record the least test influence, which is to approximately find out the165

worst removal case. Figure 3 shows that RNS always outpeforms the random seed, and have better166
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performance compared with the conventional greedy algorithm when the numer of unactivated initial167

nodes m ≥ 4.168

7 Conclusion169

In this paper, we study the practical problem of robust nodes selection for the influence maximization.170

To handle this problem, we propose RNS, which outputs a robust node seed, and a new influence171

estimation method, IEM. We extensively evaluate our algorithms over a small facebook social network.172

Expirical studies over the facebook dataset demonstrate the accuracy of IEM and the effectiveness173

and robustness of RNS with a remarkable performance improvement compared with the conventional174

greedy algorithm.175
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A Proof of the Lemmas191

Proof of Lemma 1. For an arbitrary node set T , a subset S ⊆ T , and any node v, we will prove that192

F̂ (S ∪ {v})− F̂ (S) ≥ F̂ (T ∪ {v})− F̂ (T ), (7)

where F̂ is the expectation of the influence in the first t round. Let At denote the nodes activated at193

the first t steps. The diffussion is a random process, and we can view the process as two stage. At194

each step, the first stage is that each edge decides to exist or not based on the edge probability, the195

second step is that information diffusses according to the connection decided in the first stage. We196

will prove that At(T ∪ {v}) \At(T ) ⊆ At(S ∪ {v}) \At(S) when the connection of edges in the197

first t steps in the two graphs are the same.198

For the t- step, we have199

At(T ∪ {v}) \At(T ) = At({v}) \At(T )),

and200

At(S ∪ {v}) \At(S) = At({v}) \At(S))

where At(S) ⊆ At(T ). So we have

At({v}) \At(T )) ⊆ At({v}) \At(S)),

which indicates that
At(T ∪ {v}) \At(T ) ⊆ At(S ∪ {v}) \At(S).

In the calculation of the expectation, the probability that two graphs reach the same connectio is equal
and one-to-one, and for each connection,

|At(T ∪ {v}) \At(T )| ≤ |At(S ∪ {v}) \At(S)|.

We take expectation on both sides and have equation (7), which indicates that the influence estimated201

function is submodular.202

Proof of Lemma 2. According to the property of submodular functions, we have the (1− 1
e ) approx-203

imation ratio. That is:204

F̂ (A2) ≥ (1− 1

e
) max
S⊆V \A1,|S|≤k−m

F̂ (S).

205

Proof of Lemma 3. We first define C1 = A∗ ∩A1, and then find another set C2 ⊆ A∗ \ C1 where206

|C1|+ |C2| = m. Since H∗(A∗) minimize the influence F̂ (A∗ \H∗(A∗)), we have207

F̂ (A∗ \H∗(A∗)) ≤ F̂ (A∗ \ (C1 ∪ C2))

In addition, A∗ \ (C1 ∪ C2) ⊆ V \A1 and |A∗ \ (C1 ∪ C2)| = k −m, we have208

max
S⊆V−A1,|S|≤k−m

F̂ (S) ≥ F̂ (A∗ \ (C1 ∪ C2)) ≥ F̂ (A∗ \H∗(A∗)).

209

Proof of Lemma 4. We will prove the lemma case by case:210

1. If H∗(A) = A1, we have F̂ (A \H∗(A)) = F̂ (A2), so the lemma holds.211

2. If H∗(A) 6= A1, we have at least one node v in A1 left. So we have212

F̂ (A \H∗(A)) ≥ F̂ ({v}) ≥ 1

k −m
∑
u∈A2

F̂ ({u}) ≥ 1

k −m
F̂ (A2).

213
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