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Abstract
Influence Maximization (IM for short) has been
intensively studied in the past two decades. Be-
fore running IM algorithms, we should first model
the real social network, which may be not accu-
rate enough. Therefore, evaluating the robustness
of IM strategies when the edge values have error
is important. We give a reasonable formulation
of the robustness evaluation problem against edge
uncertainty. Furthermore, we study the discrete
and continuous case of the problem, about the NP-
hardness, inapproximability, and submodularity
of the problem. For the discrete case, we propose
a greedy algorithm with 1− 1/e approximation
ratio under the linear threshold model. For the
continuous case, we propose a SGD algorithm.
We implement and evaluate the two algorithms
over a simulated social network. The evaluation
results demonstrate that the proposed greedy algo-
rithm outperforms the naive baseline, and validate
the feasibility of the SGD algorithm.

1. Introduction
Influence Maximization was first proposed by Kempe
et al., 2003, and has been intensively studied in the past two
decades (Jiang et al., 2011; Song et al., 2015; Li et al., 2017;
Kalimeris et al., 2019; Chen et al., 2020). The seminal work
proposed two classic influence diffusion models: Linear
Threshold Model (LTM) and Independent Cascade Model
(ICM), based on which they further proposed a greedy al-
gorithm to solve the IM problem, and proved an 1 − 1/e
approximation ratio for the algorithm by the submodularity
theory (Nemhauser et al., 1978).

Before solving the IM problem, we have to first model
the real social network, using LTM, ICM, or other diffu-
sion models. Accurately modeling the real social network
significantly contributes to good performance for the IM
strategy. Otherwise, even if the IM problem is solved per-
fectly, the picked seeds may not work well on the real social
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network. Therefore, much efforts have been expended in
how to model the real social network, including last year’s
course project (Jiang & Zhao, 2019), which models the
social network based on community.

However, it is hard to accurately model a social network.
On one hand, edges registered in the system may be missing
in the real social network. On the other hand, edge values
of the real social network may be affected by a number
of unmodeled factors, and may deviate from the modeled
values. Therefore, classic IM algorithms that are completely
based on the modeled social network may suffer from poor
robustness, but only little work has studied the robustness
problem (Chen et al., 2016; Bogunovic et al., 2017). The
work (Bogunovic et al., 2017) studied the robust submodular
function optimization with a max-min objective. However,
they only studied the robustness against node uncertainty.
Since the objective is a function on the node set (σ(V )),
studying the robustness against the uncertainty of the inde-
pendent variable V is essentially different from studying
that of the parameters of the function (edge values E). The
work (Chen et al., 2016) studied the robustness against edge
uncertainty, but made a very unrealistic assumption: each
edge value has an independent range, that is, E is assumed
to be within a “rectangular” range. As mentioned earlier,
edge values are affected by a number of unmodeled factors,
and are thus more reasonable to be assumed as following
the joint Gaussian distribution. The key difference is that
under the Gaussian distribution assumption, the edge values
E is within a “sphere” range, which is much more difficult
to study than a “rectangular” range. Under their assumption,
we can simply regard the combination of lowest values of
each independent range as the worst case. However, under
the practical Gaussian distribution assumption, we have to
evaluate each edge value’s impact on the diffusion process.

To establish robust IM algorithms against edge uncertainty,
we study one of the main steps of it: evaluating the ro-
bustness of a given IM seed set. The problem is, given a
social graph and a seed set, querying the minimum influ-
ence expectation of the seed set. In addition to laying the
foundation for a robust algorithms, solving this problem can
also be used for risk assessment of IM strategies. We give
two formulations of this problem, deviding it into discrete
and continuous cases. For the discrete case where there are
at most l edges missing, we propose a greedy algorithm, and
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Table 1. Theoretical results of the greedy algorithm for the robustness evaluation problem (discrete) under different diffusion models.

Diffusion Model NP-hardness Submodularity

Linear Threshold Uncertain Satisfied
Deterministic Linear Threshold Proved Not Satisfied
Independent Cascase Proved (Inapproximability also Proved) Not Satisfied

study the NP-hardness, inapproximability, and submodular-
ity of the problem. The theoretical results are summarized
in Table 1. For the continuous case where the edge values
E follow a joint Gaussian distribution, we propose a SGD
algorithm to optimize the objective function. We summarize
the contributions of this work as follows.

• To the best of our knowledge, we are the first to study
the robustness of IM strategies against edge uncertainty,
and give a reasonable formulation of it.

• We thoroughly study the discrete case of the robustness
evaluation problem, and propose a greedy algorithm to
solve it. We prove the NP hardness, inapproximability,
and the submodularity (or non-submodularity), under
various diffusion models.

• We also propose a SGD algorithm to solve the continu-
ous case of the robustness evaluation problem.

• We implement the proposed algorithms and evaluate
the performance. The evaluation results validate the
theoretical results and the feasibility of our algorithms,
and demonstrate that the proposed greedy algorithm
outperforms the naive baseline.

2. Problem Formulation
We formulate the problem of evaluating the robustness of an
IM strategy as the following Influence Minimization prob-
lem.

RI(G, V̂ ) = min
Ê∈DE

σ((V, Ê), V̂ ), G = (V,E). (1)

The graph G = (V,E) represents the social network which
is based on when selecting the optimal seeds in the IM pro-
cess. V̂ is the seeds picked in the IM process, andRI(G, V̂ )
means the robust influence of this IM strategy. We useDE to
denote the possible value range of the real social network’s
edges, and σ is a function which outputs the expectation
influence of seeds V̂ on the graph (V, Ê).

Although this work focuses on evaluating the robustness of
an IM strategy, it may inspire studies on the following Ro-
bust IM (RIM for short) problem against edge uncertainty.

RIM(G) = max
V̂⊆V,|V̂ |=k

RI(G, V̂ ) (2)

In the RIM process, the decision maker has only access to
the estimated social network G, and she wants to maximize
the worst case influence expectation when the edges of the
real network deviates from E.

For the propagation models for the objective function σ,
we dicuss three models in this work: Independent Cascade
Model (ICM), Linear Threshold Model (LTM), and De-
terministic Linear Threshold Model (DLTM). The first two
models are the classical ones from the seminal work (Kempe
et al., 2003). In ICM, E is a matrix of probabilities. When
the node u is activated, it tries to activate each of its neigh-
bors v with probability Euv only once. In LTM, E is a ma-
trix of edge weights, and Euv is the weight of edge (u, v),
subject to that

∑
uEuv ≤ 1, ∀v. Edge v is activated iff∑

u active neighbor of v Euv ≥ θv . θv is the threshold of node v,
which is picked uniformly at random from [0, 1]. We extraly
discuss the DLTM, where θv is a certain value determined
according to the social network rather than a random value.
DLTM is more reasonable because it enables the decision
maker to take into account the prior knowledge about how
easily each node can be activated. However, it’s hard to
obtain theoretical performance guarantee for algorithms in
this model, because the submodularity is often not satisfied.
In the following two subsections, we give two specific for-
mulation in the discrete case and the continuous case based
on (1).

2.1. Discrete Case

In the discrete case, we focus on the following problem that
queries the minimum influence when at most l edges in E1

actually do not exist.

max
Ê⊆E,|E−Ê|≤l

(
σ((V,E), V̂ )− σ((V, Ê), V̂ )

)
, (3)

where we transform the min problem to an equivalent max
problem. The intuitive meaning of (3) is to query the
maximum negative influence to a given IM strategy of re-
moving l edges from E. The correspondence with (1) is
DE = {Ê | Ê ≤ E and ‖vec(E − Ê)‖0 ≤ l}, where
Ê ≤ E means each element satisfies this inequation and

1E is the edge set corresponding to matrix E, and Ê is the one
for matrix Ê
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‖·‖0 is the L0 norm2. The intuition behind this formulation
is that users may have friendship links in the system, but
have no influence on each other. For example, a student reg-
isters friendship relation with her teacher in Wechat, but they
never contact each other once the course is completed. We
term this case the Discrete Robustness Evaluation problem
under IC/LT/DLT model (DER-IC/LT/DLT for short).

2.2. Continuous Case

We first formulate the continuous case according to (1).

min
‖Ê′−E′‖

2
≤R

σ((V, Ê), V̂ ), (4)

where E′ is the flattened vector of matrix E, discarding
elements with value 0 (0 means that this edge does not
exist). For Ê, we add the constraint that if an edge does not
exist in E, it does not exist in Ê either, and use Ê′ to denote
the vector of elements corresponding to those in E′.

The decision maker often estimates the edge values by some
particular model. However, the real edge value may be
affected by many unmodeled factors. Hence, it is natural
to assume that the real edge values Ê′ follows the Gaus-
sian distribution N(E′, σ2I), where I is the identity ma-
trix. Under this assumption, the probability density of Ê′

is Pr(Ê′) = 1/(2πσ2)|Ê
′|/2 exp(−‖Ê′ − E′‖22/2σ2). We

consider Ê′ with probability density under a certain thresh-
old as impossible, then the possible value range DE is a
sphere space {Ê′ | ‖Ê′ − E′‖2 ≤ R}, where the radius R
is associated with σ and the threshold.

The minimization problem under the L2-norm constraint
is hard to optimize, and we relax the problem into an un-
constained minimization problem with an L2 regularization
term.

min
Ê has only edges in E

σ((V, Ê), V̂ ) + λ
∥∥∥Ê′ −E′

∥∥∥2
2
, (5)

where λ is negatively correlated with the edge uncertainty.
We term this case continuous robustness evaluation problem
under IC/LT/DLT model (CER-IC/LT/DLT for short).

3. Complexity Analysis
In this section, we analyze the complexity of the robustness
evaluation problem in the discrete case. We prove DER-
DLT and DER-IC are both NP-hard. In addition, we prove
the inapproximability of DER-IC.

Theorem 1. DER-DLT is NP-hard.

Proof of Theorem 1. We prove the NP-hardness by the re-

2L0 norm is the number of non-zero elements
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Figure 1. The discrete robustness evaluation problem that is re-
duced from the maximum set union or maximum set intersection
problem

duction from a maximum set union problem3, defined by
a collection of subsets S = {S1, S2, · · · , Sm} of a ground
set U = {u1, u2, · · · , un}. This problem queries whether
we can select exactly k subsets Sj1 , · · · , Sjk from S whose
union size |Sj1 ∪ · · · ∪ Sjk | = l. The well-known NP-hard
set cover problem is a sub-problem of the maximum set
union problem, where l = n. Hence, this problem is also
NP-hard, and we only need to show the reduction from this
problem to prove the NP-hardness of DER-DLT.

With Figure 1, we show the reduced DER-DLT problem. G
is difined by the figure, where the thresholds for each node
are all 1. Esi, s′i = 1,∀i ∈ [m]4, and Es′i,uj

= 1/din(uj).
din(uj) is the in degree of uj , we set Es′i,uj

like this to
ensure that each uj is activated iff all nodes connected to
it are activated. Note that si and s′i correspond to set Si,
and ui corresponds to element ui. s′i is connected with
uj iff Si contains uj . The initial seeds of the IM strategy
is V̂ = {s1, s2, · · · , sm}, which has influence 2m + n
(activates all nodes). Then, the DER-DLT problem queries
whether we can reduce k + l activated nodes if we remove
k edges from G.

Then, we show the equivalence. First, note that we only
need to consider removing edges from si to s′i and do
not consider those from s′i to uj . This is because if
we remove edge (s′i, uj), removing (si, s

′
i) instead can

deactivate no less nodes (if we remove (si, s
′
i), edges

3We discuss the decision versions rather than the optimization
ones of these two problems for conciseness. Similarly, we do so
for the DER-IC as well.

4[m] is the set {1, 2, · · · ,m}
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from s′i, including (s′i, uj) will have no effect). Second,
choosing sets Sj1 , · · · , Sjk corresponds to choosing edges
(sj1 , s

′
j1

), · · · , (sjk , s′jk). When the union size is l′, the
number of deactivated nodes is k+ l′, and vise versa. There-
fore, the equivalence is built, and we can get an l-size union
set iff we can deactivate k + l nodes.

Theorem 2. MER-IC is both NP-hard and inapproximable

1. MER-IC is NP-hard.

2. Let ε > 0 be an arbitrarily small constant. Assume
that SAT does not have a probabilistic algorithm that
decides whether a given instance of size n is satisfiable
in time 2n

ε

, which is a standard assumption. Then
there is no polynomial time algorithm for MER-IC-
modified (trivial modification defined later in the proof)
that achieves an approximation ratio of 1/(N − 2n)ε

′

where N is the size of the instance, and ε′ depends
only on ε.

Proof of Theorem 2. We first introduce a lemma proved
by Xavier, 2012 about the maximum set intersection prob-
lem. This problem is the one replacing the union set in the
maximum set union problem by the intersection set.

Lemma 1. The maximum set intersection problem is both
NP-hard and inapproximate. The inapproximability result
is in the same form with that of Theorem 2 (the inapproxi-
mation ratio for this problem is 1/Nε′ ).

With this lemma, we only need to prove the reduction
from the maximum set intersection problem to prove The-
orem 2. The MER-IC-modified problem is to to maximize
σ((V,E), V̂ )− σ((V, Ê), V̂ )− k. We minus k to make the
objective function value same as that of the maximum set
intersection problem.

The reduced DER-IC-modified problem is also shown by
Figure 1. The only difference is that each edge has probabil-
ity 1, such that uj is activated if any one node connected to
it is activated. Then the reduced DER-IC-modified problem
is querying whether we can remove k edges to deactivate
k + l nodes (achieve l in the objective function). Since we
need to deactivate all edges connected to uj to deactivate uj ,
this DER-IC-modified problem is equivalent with the maxi-
mum set intersection problem. Hence, the NP-hardness and
of DER-IC are proved. For the inapproximation result, we
note that the constructed MER-IC-modified has 2n larger
instance size than the maximum set intersection problem (n
nodes and edges are added), and the objective function value
is the same. Therefore, the 1/(N − 2n)ε

′
inapproximability

result is proved.

The NP-hardness of DER-LT is reserved in the future work,
and the continuous case does not have natural NP-hardness

Algorithm 1 Greedy Algorithm for DER-LT/DLT/IC

1: Input: graphG = (V,E); seeds V̂ ⊆ V ; the maximum
number of edges to be removed l; influence propagation
model σ (may be DLT/LT/IC); number of simulations
to calculate the influence expectation ntest

2: Do initialization:
Ē ← Ø.

3: while |Ē| < l do
4: Query the edge to maximize the reduced influence

(simulate ntest times to calculate σ for LT and IC
model):

ê←arg max
e∈E−Ē

(
σ((V,E), V̂ )−σ((V,E − Ē − {e}), V̂ )

)
.

5: Ē ← Ē ∪ {ê}.
6: end while
7: Return: edges Ē and the corresponding influence ex-

pectation σ((V,E − Ē), V̂ ).

formulation, thus not considered. Due to the NP-hardness
of DER-DLT and DER-IC, we can not expect a polyno-
mial algorithm for these two problems, and due to the in-
approximability of DER-IC, we can not expect a 1 − 1/e
approximation ratio of greedy algorithms for DER-IC.

4. Discrete Formulation: Greedy Algorithm
In this section, we present a greedy algorithm for DER-
LT/DLT/IC, and prove an 1− 1/e approximation ratio for
DER-LT. We also show that the objective functions for DER-
DLT/IC are not submodular, and some possible modification
to these two cases to achieve a theoretical approximation
ratio is reserved in the future work.

We present the algorithm in Algorithm 1. The process is
to greedily maximize the objective function (reduced in-
fluence) fD(Ē) = σ((V,E), V̂ ) − σ((V,E − Ē), V̂ ), by
iteratively adding edges into Ē. Greedy algorithms in the IM
background usually have high time complexity and are hard
to scale up (Cohen et al., 2014). Unfortunately, Algorithm 1
also suffers from this problem, even more severely, since it
iterates over edges rather than nodes. Specifically, by sim-
ple calculation, the time complexity is in the O(lntest|E|2)
order (suppose |E| ≥ |V |).

Then, we prove the submodularity when the diffusion model
is LT.

Theorem 3. The objective function fD(Ē) under the LT
diffusion model is submodular. That is,

fD(E1 ∪ {e})− fD(E1) ≥ fD(E2 ∪ {e})− fD(E2),

for all edges e and all pairs of sets E1 ⊆ E2.
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Figure 2. The live-edge graph when there are two paths from the
seeds to u4

Proof of Theorem 3. Following the tradition of the seminal
work (Kempe et al., 2003), we define the live-edge graph for
LT model. Each node vj pickes at most one of its incoming
edges, selecting the edge from vi with probability Evi,vj .
Then the picked edges and V forms a live-edge graph. The
seminal work (Kempe et al., 2003) has proved that the ex-
pectation influence is the expectation of reachable nodes in
the live-edge graph. Then, we only need to prove that for
each live-edge graph, removing edge e can not deactivate
more edges when more edges have been removed before e.

Based on Figure 2, we prove the following lemma.

Lemma 2. For each node on an arbitrary live-edge graph,
there is at most one path from the seeds.

Suppose there are more than one paths to node u4, we
can pick two of them. Then, the two paths will form a
graph like Figure 2. There must be a node which has two
incoming edges (node u2 in the figure), which contradicts
the construction of live-edge graphs (each node has at most
one incoming edges).

With Lemma 2, we can prove the theorem. First, we define
A(v,G), which is 1 when v is reachable from the seeds in
live-edge graph G, and is 0 else. Then, we want to prove
that for all node v, and any live-edge graph G′ = (V,E′),

A(v, (V,E′ − E1))−A(v, (V,E′ − E1 − {e}))
≥A(v, (V,E′ − E2))−A(v, (V,E′ − E2 − {e})),

which implies the effect of removing e on v. With Figure 3,
we prove this equation case by case. In case 3(a), removing
e has no effect on v, and

A(v, (V,E′ − E1))−A(v, (V,E′ − E1 − {e}))
=A(v, (V,E′ − E2))−A(v, (V,E′ − E2 − {e})) = 0.

(6)

In case 3(b) and 3(c), v is reachable. From Lemma 2, there
is only one path, thus following the figures. In case 3(b),
removing e also does not have effect on v, and (6) still holds.
In case 3(c), removing v from (V,E′ − E1) can deactivate
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(a) v is not reachable from
any seed.
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Figure 3. The listed cases of the live-edge graph. s1 and s2 are
selected as seeds.
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𝑠𝑠1 𝑠𝑠2𝑣𝑣

Figure 4. The example DER problem that does not satisfy submod-
ularity. s1 and s2 are the seeds.

v, and

A(v, (V,E′ − E1))−A(v, (V,E′ − E1 − {e})) = 1

≥A(v, (V,E′ − E2))−A(v, (V,E′ − E2 − {e})).

Therefore,

fD(E1 ∪ {e})− fD(E1)

=E
∑
v∈V

(A(v, (V,E′ − E1))−A(v, (V,E′ − E1 − {e})))

≥E
∑
v∈V

(A(v, (V,E′ − E2))−A(v, (V,E′ − E2 − {e})))

=fD(E2 ∪ {e})− fD(E2)

From Theorem 3 and the theory of submodular func-
tions (Nemhauser et al., 1978), we prove an 1 − 1/e ap-
proximation ratio for Algorithm 1 under DER-LT.

Theorem 2 implies that the objective under DER-IC can
not be submodular. Otherwise, the polynomial-time greedy
algorithm can achieve 1−1/e approximation ratio. Actually,
we can give simple examples to show that both the objective
functions under DER-IC and DER-DLT are not submodular.
The example is shown in Figure 4. For DER-IC, all the
edges are with probability 1. Then,

fD(Ø ∪ {(s1, v)})− fD(Ø) = 0

<fD({(s2, v)} ∪ {(s1, v)})− fD({(s2, v)}) = 1. (7)

For DER-DLT, all the edges are with weight 0.5, and the
threshold for v is 0.5. Then (7) still holds. Therefore, fD
under DER-IC and DER-DLT is not submodular, and we
can not obtain an approximation ratio with the theory of
submodular functions.

5. Continuous Formulation: SGD
Referring to (5), we want to minimize

fC(Ê) = σ((V, Ê), V̂ ) + λ
∥∥∥Ê′ −E′

∥∥∥2
2

(8)

in the coninuous case. Since the domain is continuous, we
consider applying gradient descent on the objective func-
tion fC to optimize it. However, we can not algibraically
derive the gradient of fC , and use simulations to estimate

Algorithm 2 SGD Algorithm for CER-LT/IC

1: Input: graph G = (V,E); seeds V̂ ⊆ V ; regulariza-
tion weight λ; objective function fC ; number of simu-
lations to calculate the gradients ntest; perturbation to
the edge values when calculating the gradients δ; step
size η; number of iteration nit

2: Do initialization:
Ê← E.

3: for nit times do
4: Simulate ntest times to derive the original objective

in this iteration: fC(Ê).
5: for each edge Evi,vj ∈ E do
6: Perturb the value of this edge

Êtmp ← Ê, Êtmp
ij ← Êij + δ. (9)

7: Simulate ntest times to derive the new objective
value: fC(Êtmp).

8: Derive the numerical gradient:

gij ← max(
fC(Êtmp)− fC(Ê)

δ
, 0) (10)

9: Add the gradient of the regularization term:

gij ← gij + 2λ
(
Êij − Eij

)
(11)

10: end for
11: Update the edge values: Êij ← Êij − ηgij for each

edge Evi,vj ∈ E.
12: end for
13: Return: edge values Ê and the corresponding influence

expectation σ((V, Ê), V̂ ).

the gradient instead (numerical gradient). This introduces
randomness to the algorithm, and we thus term the algo-
rithm stochastic gradient descent (SGD for short). Note that
this SGD is not the same as that in machine learning. We do
not consider CER−DLT in this work, because fC under
DLT diffusion model is not continuous or derivable.

We present the details in Algorithm 2, where we apply
gradient descent on the edge values Ê. The inner for loop
describes the process to derive the numerical gradient. For
each edge value in Ê, we purturb this value by δ5. Then
in (10), we use the difference of influence expectation to
derive the numerical partial derivative to this edge value.
Since the gradient is calculated via simulation, it may be
smaller than 0. However, from the practical meaning of
fC , the partial derivative can not be smaller than 0, and we
apply the function max(·, 0) in (10). For the gradient of

5We do not allow Êtmp
ij to exceed 1, and let δ be the actual

added value in this case.
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the quadratic regularization term, we can directly derive the
algebraical gradient in (11). Finally, we update Ê and turn
to the next iteration.

Similar to the greedy algorithm in the discrete case, since we
also need to simulate in the SGD algorithm, the time com-
plexity is still very high. Specifically, the time complexity
is in the O(nitntest|E|2) order (suppose |E| ≥ |V |).

6. Experimental Results
In this section, we evaluate greedy Algorithm 1 and SGD
Algorithm 2 over a toy dataset under LT and IC diffusion
models. As has been mentioned in earlier sections, the pro-
posed algorithms have high time complexity. Due to the
limitation of our computation resources, we can only run
the algorithms on a graph with about 100 nodes. Therefore,
we have to construct a tiny social network for our simula-
tion. Specifically, we select one of the ego networks from
the facebook network (McAuley & Leskovec, 2012), and
randomly pick 88 nodes from it. The facebook network is
undirected, and we make it directed simply by randomly as-
sign each edge a direction. We use the contructed graph for
our experiments, which contains 88 nodes and 452 edges.
For the probability associating with the edges in the IC
model, we follow the tradition of the seminal work (Kempe
et al., 2003), assigning the probability of edge (vi, vj) to
1/din(vj). Similarly, we assign the weight of edge (vi, vj)
to 1/din(vj) in the LT model.

6.1. Experiments on DER

For all experiments in the DER case, we set the maximum
number of edges to be removed l = 10. Since we are the first
to study the DER problem, there is no baseline algorithm for
this problem. Therefore, we use a naive algorithm, which
picks the edge with the largest probability/weight in each
iteration, as the baseline. We term this baseline algorithm
max probability/weight.

Figure 5 shows the process of DER-LT and DER-IC. Note
that the objective is to maximize the reduced influence ex-
pectation. Then we can see that the proposed greedy al-
gorithm outperforms the baseline in both cases. Greedy
algorithm reduces 2.653 more influence expectation than
the baseline under LT model, and reduces 3.183 more under
IC model.

Figure 6 shows the effect of the number of simulations ntest
on the performance of the greedy algorithm. Intuitively, a
larger ntest contributes to better performance but requires
longer running time, which is consistent with the experiment
result. Furthermore, we can see from the figure that about
4000 simulations are enough for this small-scale graph.
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(a) Results of DER-LT
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(b) Results of DER-IC

Figure 5. The influence expectation during the process of remov-
ing edges one by one, using the baseline max weight/probability
algorithm or greedy Algorithm 1. The number of simulations
ntest = 5000

���� ���� ���� ���� ����
ntest

����

�	��

�	��

����

����

����

��
���

��
��

�

��

��
��

���
�


���������
������

���

Figure 6. The influence expectation after removing l edges via max
weight algorithm or greedy Algorithm 1, with different number
of simultation times ntest. The diffusion model is LT, and the
baseline algorithm does not need simulation, thus unrelated with
ntest in the figure.
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6.2. Experiments on CER

For experiments on CER, we set regularization weight λ =
30, step size η = 0.1/λ, the number of iterations nit =
15, perturbation δ = 0.1, and the number of simulations
ntest = 5000 by default. We let step size η decrease when
λ increase to prevent the gradient of the regularization term
from varying violently when λ changes. This also follows
the intuition that the real edge matrix Ê will not deviate
far from the predicted edge matrix E when λ is large. We
can not think of any naive baseline algorithms for the CER
problem, and thus present only the results of the proposed
SGD algorithm.

Figure 7 shows the performance of the proposed SGD al-
gorithm on CER-LT. From Figure 7(c), we can see that the
SGD process on the objective fC converges very fast, in
only about 5 iterations. This validates that the proposed
SGD algorithm can converge at least to a local minimum of
the objective fC . The influence when fC is minimized is
the robust influence under the CER formulation. Intuitively,
larger λ implies more accurate estimation of the real social
graph, and more robust performance of the computed IM
strategy. Both Figures 7(b) and 7(c) validates this conjec-
ture. With larger λ, the influence expectation when fC is
minimized, is larger. Figure 8 shows the performance of
the SGD algorithm on CER-IC, which also validates the
convergence of the algorithm.

Figure 9 shows the effect of ntest on the performance of the
SGD algorithm on CER-LT. The results validate the intuition
that larger ntest contributes to more accurate numeracal
gradient, and thus more stable SGD process. From the
figure, we can also see that ntest = 3000 is enough for the
small-scale network.

7. Future Work
This work sheds light on the robustness evaluation of IM
strategies. Future work includes proving the NP-hardness
under LTM, which we fail to manage. Since we study the
robustness evaluation problem from scratch, the proposed
greedy and SGD algorithms are with relatively high time
complexity, and we expect to address this in the future.
Furthermore, this work lay a solid fundation for designing
robust IM algorithms against edge uncertainty, which may
be studied in the future.

8. Conclusion
In this work, we investigate the problem of evaluating the ro-
bustness of IM strategies. We give a reasonable formulation
of it, and specifically discuss the discrete and the continu-
ous case. For the discrete case, we prove the NP-harness
under IC and DLT diffusion models, and design a greedy

algorithm with 1−1/e approximation ratio under LT model.
Furthermore, empirical experiments show that the greedy
algorithm outperforms the naive baseline, and validate the
theoretical results. For the continuous case, we design a
SGD algorithm, implement it, and validate its feasibility by
applying to a simulated social network.
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(a) Objective function fC ’s value with dif-
ferent λ.
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(b) Influence expectation with different λ
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(c) The minimum fC during the SGD pro-
cess and the corresponding influence ex-
pectation with different λ

Figure 7. Experiments on CER-LT with different λ.
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Figure 8. The objective function fC’s value and the influence ex-
pectation during the SGD process under IC model. Regularization
weight λ = 30, step size η = 0.0033, number of simulations
ntest = 10000.
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Figure 9. The objective function fC’s value during the SGD pro-
cess under LT model, with different number of simulations ntest.
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