
Mining collaboration in NSF 
grants
...with comparison between China & US
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Author Mapping

Mapping from name to Acemap-ID: Name (Maria M. Almanzar) -> AuthorID  (1000000415)

● Large volume of data: 91,458,238 authors in total, took almost 2 min to traverse, over 8 GB dump;

● Confusion between duplicate names: more than 10 authors with name ‘A. A. A. Mohamed’;

● Ambiguity rising from degeneracy: ‘张三’ or  ‘San Zhang’ or ‘San ZHANG’ or ‘Zhang San’;

● Multiple Institutions: Geoffrey Hinton worked for Google and the University of Toronto at the same time;

● Typo: ‘Keith Ross’ (NYU Professor) and ‘Keith Rose’ (surgeon) and ‘Keith Ros’ (nobody);



Author Mapping
Strategy One: Direct Matching of Name.



Author Mapping
Strategy Two: Direct Matching of Name + Affiliation.



Author Mapping
Strategy Three: similarity ranking of Name + Affiliation (based on Levenshtein distance).

❖ The Levenshtein distance between two 
string is the minimum number of 
single-character edits (insertions, 
deletions or substitutions) required to 
change one word into the other. 



Author Mapping
Strategy Four: similarity ranking of Name + Collaborators (based on Graph Neural Network).



Author Mapping

Design of Experiments:

● Use authors from NSF_US as dataset, randomly extract 10% of it as test set;

● Manually create typos at rate α in test set (insertions, deletions or substitutions);

● Set a drop rate β of affiliation and collaborators;



Author Mapping

Training Time Inference Time Acc* Acc**

Name - 0.01 s/item 0.93 0.42

Name + Affiliation - 0.02 s/item 0.98 0.53

Levenshtein - 0.42 s/item 0.99 0.89

GNN 2 hours 1.98 s/item 0.97 0.95

*  : with α = 0     and  β = 0
**: with α = 0.2 and  β = 0.8



Author Mapping

Deployment:

● We will deploy our algorithms on Acemap server and provide an API for users;



Contribution Ⅰ: NSF-CN DataBase

Intuition and Contribution:

● Acemap NSF-CN database contains the principal investigator and the grant information;

● We built a table (NSF_CN.grants), using ‘grants.projectManager’ as foreign key;

● We built a table (NSF_CN.cn_nnsf_participants), 



Contribution Ⅱ: NSF-US Grant Table

Intuition and Contribution:

● Acemap NSF-US database contains the principal investigator and the grant information;

● We built a table (NSF_US.grants) providing detailed information about grants;

● We built a table (NSF_US.participants) providing all investigators in the grants.



Graph Database

● A type of NoSQL database.

● Uses graph structures for semantic queries with nodes, edges, and properties to represent and 

store data.

● Flexible & Extensible.

https://en.wikipedia.org/wiki/NoSQL


JanusGraph

● Deployment

○ Hbase as storage backend.

○ Solr as external index backend.

○ Gremlin as graph traversal 

language.

● Performance Test

○ 5.75s for finding the US scholar 

with most collaborations. .



Connect to Gephi



Complex Network Analysis

● Qualitative methods for understanding network characteristics

● Metrics we look at
○ Size
○ Degree distribution, average node degree
○ Diameter
○ Assortativity coefficient: Do connected nodes have similar degrees - rich club?
○ Clustering coefficient: Tendency for nodes to cluster together
○ Rich club coefficient: Are well-connected nodes connected?

● Cross-comparison between US, CN and US + CN



Example: US NSF

● Size: |V| = 104524, |E| = 235320

● Average degree: 4.50

● (Pseudo) Diameter: 20

● Assortativity: 0.07
○ Close to 0, not assortative

● Average clustering coefficient: 0.46 (High)



Example: US NSF

Does NOT follow power law



Cross-comparison

Data Diameter Assortativity Average 
clustering 
coefficient

Rich club 
coefficient

US 20 0.07 0.45 < 1

CN 18 0.13 0.56 < 1

CN + US 15 -0.25 0.32 < 1



The Final CN-US collaboration (not coronavirus)



Thanks



Notable Metrics

● Assortativity
○ Two connected nodes imply their similarity.
○ Assortativity coefficient, with regard to a property, measures the overall similarity on this property between 

two connected nodes?
○ Actually Pearson’r, so falls in [-1, 1]

● Clustering coefficient
○ For each node, the number of edges in its neighborhood / the number of edges if its neighborhood is complete
○ Understood w.r.t a comparable random graph

● Rich club coefficient
○ For degree k, the number of edges in the subgraph formed by nodes with degree >= k / complete graph



Computing the Metrics

● Select a network-analysis framework
○ Strike the right balance between speed and ease of use
○ Contenders: networkx, igraph, graph-tool, SNAP, networkkit

● Networkx
○ The most-feature complete
○ Written in pure Python = extremely slow
○ Benchmarks1 show that it is 10 times slower than the slowest library

● Graph-tool
○ C++ with Python interface = fast (like Numpy)
○ We have to implement the rich club coefficient ourselves

● Why not Gephi
○ Not well-maintained
○ Lack many metrics

1 https://www.timlrx.com/2020/05/10/benchmark-of-popular-graph-network-packages-v2/


