
EE447

COURSE PROJECT

DOCUMENTATION

Transmission Strategy on Time Variant Caching
System

Author:
Huang WENDI

May 27, 2018

Contents

1 Introduction 1
1.1 Background 1
1.2 Model 2

2 Existing Work 2

3 Main Results 2

4 Future Work 3

5 Conclusion 3

Abstract

Caching is a technique to reduce peak traffic rates
by prefetching popular content into memories at the end
users. The gain offered by this approach, which I term lo-
cal caching gain, depends on the local cache size (i.e., the
memory available at each individual user). In this paper,
I base on a second, global, caching gain not utilized by
conventional caching schemes. This gain depends on the
aggregate global cache size (i.e., the cumulative memory
available at all users), even though there is no coopera-
tion among the users. Different from conventional cache,
the model used in this paper is a time-variant cache of
which size can increase over time. In this paper, I propose
an algorithm to decide how to distribute files to users with
such kind of cache.

1. Introduction

1.1. Background

The high temporal variability of network traffic re-
sults in communication systems that are congested dur-
ing peak-traffic times and underutilized during off-peak
times. One approach to reduce peak trafc is to take
advantage of memories distributed across the network
(at end users, servers, routers, etc) to duplicate content.
This duplication of content, called content placement or
caching, is performed during off-peak hours when net-
work resources are abundant. During peak hours, when
network resources are scarce, user requests can then be
served from these caches, reducing network congestion.
In this manner, caching effectively allows to shift traffic
from peak to off-peak hours, thereby smoothing out traf-
fic variability and reducing congestion.

From the above discussion, we see that the caching
problem consists of two distinct phases. The first phase
is the placement phase. In this phase, the network is not
congested, and the main limitation is the size of the cache
memories. The second phase is the delivery phase. In this
phase, the network is congested, and the main limitation
is the rate required to serve the requested content.

In[1], the author proposed a coded caching strategy
to get a global gain which derives from jointly optimizing
both the placement and delivery phases.

In practice, cache size doesn’t remain fixed because
as long as webpage isn’t closed, the server can continu-
ously transfer data to the user. From this perspective, the
cache size is time-increasing. However, user may discon-
nect the link at any time so we still face the network traffic
problem. Therefore, I follow the coded caching strategy
and on this basis shatter the file into more pieces in order
to handle the mutative coded strategy.

1.2. Model

To formally analyze the performance of the pro-
posed coded caching approach, and in order to evalu-
ate and isolate these two gains, we introduce a new,
information-theoretic formulation of the caching problem
focusing on its basic structure. In our setting, depicted
in Fig. 1, K users are connected to a server through a
shared, error-free link. The server has a database of N
files of equal size. Each of the users has access to a cache
memory big enough to store M of the files. During the
placement phase, the caches are filled as a function of the
database. During the delivery phase, each user may ask
for any one of the N possible files. The objective is to de-
sign the placement and delivery phases such that the load
of the shared link in the delivery phase is minimized. For
simplicity, we restrict the discussion in the introduction
section to the most relevant case, in which the number of
files N is larger than or equal to the number of users K.

Figure 1: An example of caching system. A server containing N
files of size F bits each is connected through a shared link to K
users each with an isolated cache of size MF bits.In the figure,
N = K = 3 and M = 1.

To better understand the effect of the gains, we can
compare the rates of the conventional uncoded scheme
(achieving only the local gain) versus the proposed coded
scheme (achieving both the local and global gains) for a
system with N = 30 files and K = 30 users as shown in
Fig. 2.

As is in the example above, for each M, the rate of
the uncoded caching scheme is less than that of uncoded
caching. My work is to connect each point on the coded
caching curve so that when M increases, the lower R can
still be achieved in this process.

2. Existing Work

A.Problem Description
The server has access to a database of N files

W1 . . .WN each of size F bits. Each user k has an isolated

Figure 2: Rate R required in the delivery phase as a function
of memory size M for N = 30 files and K = 30 users. The fig-
ure compares the performance of the proposed coded caching
scheme to that of conventional uncoded caching.

cache memory Zk of size MF bits for some real number
M ∈ [0,N].

The system operates in two phases: a placement
phase and a delivery phase. In the placement phase, the
users are given access to the entire database W1 . . .WN of
files. Each user k is then able to fill the content of its
cache Zk using the database. In the delivery phase, only
the server has access to the database of files. Each user
k requests one of the les Wdk in the database. The server
is informed of these requests and proceeds by transmit-
ting a signal X(d1,...,dk) of size RF bits over the shared link
for some fixed real number R. The quantities RF and R
are referred to as the load and the rate of the shared link,
respectively. Using the content Zk of its cache and the
signal X(d1,...,dk) received over the shared link, each user k
aims to reconstruct its requested file Wdk .
B.Problem Statement

Let (Wn)
N
n=1 be N independent random variables

each uniformly distributed over [2F] for some F ∈ N.
Each Wn represents a file of size F bits.

The caching functions map the files W1 . . .WN into
the cache content

Zk , φk(W1 . . .WN)

for each user k ∈ [K]

3. Main Results

Algorithm 1: Time-variant Coded Caching

1 procedure PLACEMENT(W1, . . . ,WN)
2 for n ∈ [N] do
3 split Wn into (Wn,i, i ∈ [ξ]) of equal size
4 end
5 Wn,φ ←{Wn,1,Wn,2, . . . ,Wn,ξ};
6 for i ∈ [N] do
7 si← ξ/

(K
i

)
;

8 end
9 forall t do

10 Γt ←{T ⊂ [K] : |T |= t};
11 end
12 Initialize t as t = 1;
13 for T ∈ Γ1 do
14 Wn,T ←randomly pick s1 elements from Wn,φ ;
15 Wn,φ ←Wn,φ\Wn,T

16 end
17 for k ∈ [K] do
18 Zk← (Wn,T : n ∈ [N],T ∈ Γt ,k ∈ T)
19 end
20 end procedure
21

22 procedure TRANSMISSION(i)
23 Γi←{T ⊂ [K] : |T |= i};
24 Γi+1←{T ⊂ [K] : |T |= i+1};
25 for T ∈ Γi+1 do
26 Wn,T = Φ;
27 Σ←{A⊂ T : |A|= i};
28 for τ ∈ Σ do
29 add a randomly picked Wn,θ ∈ τ to Wn,T ;
30 τ ← τ\Wn,θ ;
31 end
32 end
33 for k ∈ [K] do
34 Zk← (Wn,T : n ∈ [N],T ∈ Γi+1,k ∈ T);
35 Transmit

⋃
(Wn,T : n ∈ [N],T ∈ Γi+1,k ∈ T)\

36
⋃
(Wn,T : n ∈ [N],T ∈ Γi,k ∈ T) to Zk;

37 end
38 end procedure
39

40 procedure DELIVERY(W1, . . . ,WN ,d1, . . . ,dK)
41 G←{S⊂ [K] : |S|= t +1};
42 X(d1,...,dK)← (⊕k∈SWdk,S\k : S ∈ G) end

procedure

In the algorithm, ξ is lowest common multiple
(LCM) of all

(K
i

)
. For example, when K = 4, ξ = 12

and for K = 5, ξ = 10. I will give the expression of ξ

later.
To better understand the algorithm, I will give an

example with N = K = 4.

Figure 3: An example of caching process. N = K = 4 and M
increases from 1 to 3.

The expression of ξ is

∏
p≤K;p∈N

p[logp K]

(p[logp K],K +1)

where (a,b) means the greatest common divisor of a and
b.

4. Future Work

We suppose the situation that t is an integer, how-
ever, in reality, t may not always be an integer. A future
work can design a continuous transmission strategy.

Sometimes, the files don’t share same priority.
Knowing the popularity distribution of the files, we can
populate the caches, such as to minimize the expected
load of the shared link. In this situation, how to transmit
files to time-variant cache still remains a problem.

5. Conclusion

In this project, we design a tranmission algorithm to
support the coded caching method so that it can be used
in a time-increasing cache, which satisifies reality much
more. To fulfill this algorithm, we also need to calcu-
late the lowest common multiple and split each file into

such many pieces. During the placement phase, we split
files and place parts of them in users. After that, cache
increases with time. We calculate the parts to transmit
and transmit them to every user so that the coded caching
strategy stays available. At last, when link is cut, cache
process is over. During the delivery phase, the server
delivery certain files to each user according to their de-
mands.

References

[1] [M. A. Maddah-Ali and U. Niesen](2014). Fundamental
limits of caching. IEEE Trans. Inf. Theory, vol. 60, no. 5,
pp. 28562867, May 2014.

