
Research Paper Recommender System Based on
Deep Text Comprehension

Dongyu Ru1, Kun Chen1

1IEEE Honer Class – Shanghai Jiao Tong University

Abstract. Research Paper Recommender System has been exploited over the
past few years. Methods based on CBF (Content-based Filtering) , CF (Collab-
orative Filtering) and GR (Graph-based Recommendations) have been applied
to many Research Paper Recommender Systems. And More than half of them
used Content-based Filtering. In this report, we proposed a new method of CBF
Recommender System for paper recommendations. It uses a deep RNN (Re-
current Neural Network) to dig the information of paper text and construct a
matching model to assess the similarity between papers. We also compare the
matching model with some traditional baselines with a few experiments to prove
our model performs better.

1. Introduction & Background
Among various kinds of Research Paper Recommender Systems [Beel et al. 2016], CBF
[Ferrara et al. 2011] is one of the most widely used and researched recommendation class.
The content-based filtering approaches mainly utilized papers that the users had authored,
tagged, browsed, or downloaded. TF-IDF was the most frequently applied weighting
scheme. In addition to simple terms, n-grams, topics, and citations were utilized to model
users’ information needs. One central component of CBF is the user modeling process, in
which the interests of users are inferred from the items that users interacted with. “Items”
are usually textual. “Interaction” is typically established through actions, such as down-
loading, buying, authoring, or tagging an item. Items are represented by a content model
containing the items’ features.

However, from our point of view, the feature extractions simply from word-level cannot
depict the main content of text information, which leads to relatively lower capacity of
content representation. Hence we propose a matching model based on recurrent neural
networks. We claim that it has a higher capacity to distinguish and model different kinds
of patterns of text content. And therefore, It can achieve a more accurate similarity anal-
ysis in a CBF Research Paper Recommender System.

So in this report, based on the traditional CBF Research Paper Recommender System. We
replace the original similarity comparison mechanism with a deep neural network which
gets higher capacity to dig adequate patterns of text information. Such that more accurate
recommendations can be provided with the system.

2. Framework
As we have mentioned above, we use a typical framework of CBF Recommender system
as shown in Figure 1. The complete procedure can be described as below:

1. We get tagged papers from users. And the tag interaction is built by the down-
loading, buying, browsing, marking behaviors the user has manipulated on those
papers.

2. We construct the paper corpus from web crawled papers, along with their citation
interactions, categories and other meta data.

3. With simple preprocess on papers both from user tagging and papers corpus, we
can get a candidate list of papers as potential recommendations and also the user
profile. Note that the user profile in our process is actually a set of papers the user
interacted with in the history. The weighting scheme on time can be applied here.

4. We take both user profile and candidate papers as input to the DTC model to get
the relative similarities between them. Then we can get the recommended papers
by similarity rankings.

DTC Model

Tag

Web Data Papers
Corpus

Text
Preprocess

Candidate
Papers

User
Profile

Recommended
Papers

Figure 1. Recommender System Framework

With such framework, we provide user-based personalized recommendations and get a
solution for Research Paper Recommender System solution. We saw that the rest parts of
the process except for DTC Model are relatively mature and well explored. So we mainly
focus on the construction of DTC Model at the following sections.

3. Model (Dongyu Ru)
In this part, we will describe the structure of our DTC (Deep Text Comprehension) Model
in detail. Our DTC model is a deep LSTM-based neural network which consists of mainly
7 layers, as shown in Figure 2. It takes as input the words and characters of the paper
text. And output a similarity score between the input papers.

1. Character Embedding Layer [Kim et al. 2016] This layer maps each word to
a vector space using character-level CNN (Convolution Neural Network). Let
a = {a1, a2, ..., aT} and b = {b1,b2, ...,bT} represent the input words of two
papers. Characters are embedded into vectors, as 1D inputs to the CNN, whose
size is the input channel size of CNN. The outputs of CNN are max-pooled over
the entire width to obtain a fixed-size vector for each word.

2. Word Embedding Layer [Pennington et al. 2014] This layer maps each word
to a high-dimensional vector space. Pretrained word vectors, GloVe, are used to
obtain the fixed word embedding of each word. The output of Word Embedding
Layer and Char Embedding layer are concatenated together as representation of
input text.

3. Highway Layer [Srivastava et al. 2015] This layer takes as input the concate-
nation of two sequences of embedding vectors in word-level. And it performs as

a gate to leak part of original information of input directly to next layer. Let x
represent the input.

T (x) = σ(WTx+ bT)
o(x) = relu(Wox+ bo)
O(x) = T (x) · o(x) + (1− T (x)) · x

(1)

4. Contextual Embedding Layer In this layer, a LSTM(Long Short Term Memory)
[Hochreiter and Schmidhuber 1997] Network is applied after the Highway layer
output. The output states of LSTM are concatenated and transmitted to the next
layer. Till now, feature representation on different granularity has been obtained.

yt = BiLSTM(yt−1, xt) (2)

5. Attention Flow Layer [Seo et al. 2016] Here, contextual embedding output of
two papers are input to the Attention Flow Layer to get a mutual-aware represen-
tation of input papers.

6. Modeling Layer The Modeling Layer are constructed by another LSTM layer.
The input of modeling layer is attention output stacks. It captures the interaction
in the mutual-aware representation of input papers.

7. Dense Layer The Dense Layer acts as the output layer of this model, which takes
the final state of Modeling Layer as input, use a fully-connected layer and sigmoid
function to get score of similarity.

score = sigmoid(W T
s M) (3)

4. Baselines (Kun Chen)
In this part, we will describe the two baseline methods (tf-idf and simhash) used in our
experiment in detail. tf–idf, short for term frequency–inverse document frequency, is a
numerical statistic that is intended to reflect how important a word is to a document in a
collection or corpus. simhash is a technique for quickly estimating how similar two sets
are. The algorithm is used by the Google Crawler to find near duplicate pages.

1. tf-idf The tf-idf value increases proportionally to the number of times a word ap-
pears in the document and is offset by the frequency of the word in the corpus,
which helps to adjust for the fact that some words appear more frequently in gen-
eral. The weight of a term that occurs in a document is simply proportional to
the term frequency, and the specificity of a term can be quantified as an inverse
function of the number of documents in which it occurs. The tf–idf is the product
of term frequency and inverse document frequency. In our model, we used the
simplest tf scheme, i.e. tfi,j =

ni,j∑
k
nk,j

, where ni,j is the number of times the word
ti appeared in the document dj , and

∑
k nk,j is the sum of the times all the words

in dj appeared, i.e. the total number of words in the document. idf is the logarith-
mically scaled inverse fraction of the documents that contain the word, obtained
by dividing the total number of documents by the number of documents contain-
ing the term, and then taking the logarithm of that quotient. idfi = log |D|

1+|j:ti∈dj | ,
where |D| is the number of documents in the corpus, and |j : ti ∈ dj| is the number
of documents where the term ti appears. In order to prevent the division-by-zero
problem, we add 1 to the denominator.

word
embedding

char
embedding

...

...

...

...

concat

...

highway
layer

contextual
embedding

layer

attention
flow layer

modeling
layer

dense layer

...

...

...

...

Figure 2. DTC Model

2. simhash simhash is a hash function where similar items are hashed to similar
hash values, the word ”similar” means the bitwise hamming distance between
hash values. The simhash of a phrase is calculated as follow:

(a) pick a hashsize, for example 64 bits
(b) let V = [0] * 64 (i.e. 64 zeros)
(c) break the phrase up into features
(d) hash each feature using a normal 64-bit hash algorithm
(e) for each hash,if biti of hash is set then add 1 to V[i],if biti of hash is not

set then take 1 from V[i]
(f) simhash biti is 1 if V [i] > 0 and 0 otherwise

simhash is useful because if the simhash bitwise hamming distance of two phrases
is low then their jaccard coefficient is high. in the case that two numbers have a
low bitwise hamming distance and the difference in their bits are in the lower order
bits, then it turns out that they will end up close to each other if the list is sorted.
In order to avoid whether the items differ in the higher or lower order bits we can
just do the following 64 times:

(a) rotate the bits
(b) sort
(c) check adjacent

In our experiment the length of phrase n is much larger than 64, so the entire
algorithm will be under O(n2).

5. Experiments
To prove our model performs better to play as a matching model in Research Paper Rec-
ommender System. We collect a dataset to verify the performance of our model and
baselines. Restricted by the limited computation power, we randomly selected 1M papers
from the dataset for validation. After filtering out bad cases in the dataset. Finally we
perform the experiments on a dataset of 200K papers.

30% of the datasets are reserved as test set. And experiments on baselines are directly
performed on test set without training. We evaluate our DTC (Deep Text Comprehension)
Model with ROC (Receiver Operating Characteristic Curve) as shown in Figure 3 and
AUC (Area Under Curve) as shown in Table 1.

Figure 3. ROC of 3 matching models

Table 1. AUC comparison of matching performance

TF IDF SIM-HASH DTC
AUC 0.65 0.61 0.95

One more thing need to mention is that our model runs slower than those 2 baselines. For
a same dataset with 60K data items, TF-IDF runs for 3 mins, while Simhash runs for 3
hours, both on CPU i5-5200U. Our model needs about 10 hours, and extra GPU support
needed.

6. Conclusion
In this report, we proposed a Deep Text Comprehension based Recommender System,
which replace the original matching model in a CBF Research Paper Recommender Sys-
tem with a Deep Neural Network. And we claim the DTC model has higher capacity
to recognize the patterns in text. Experiments indicate that our DTC model performs
better than two baselines mentioned in the report. However, the extra running time and
computing power is still a problem to be fixed.

References
Beel, J., Gipp, B., Langer, S., and Breitinger, C. (2016). Research-paper recommender

systems: a literature survey. International Journal on Digital Libraries, 17(4):305–
338.

Ferrara, F., Pudota, N., and Tasso, C. (2011). A keyphrase-based paper recommender sys-
tem. In Agosti, M., Esposito, F., Meghini, C., and Orio, N., editors, Digital Libraries
and Archives, pages 14–25, Berlin, Heidelberg. Springer Berlin Heidelberg.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computa-
tion, 9(8):1735–1780.

Kim, Y., Jernite, Y., Sontag, D., and Rush, A. M. (2016). Character-aware neural language
models. In AAAI, pages 2741–2749.

Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543.

Seo, M., Kembhavi, A., Farhadi, A., and Hajishirzi, H. (2016). Bidirectional attention
flow for machine comprehension. arXiv preprint arXiv:1611.01603.

Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015). Highway networks. arXiv
preprint arXiv:1505.00387.

