
Embedding and Network Representation Learning
in AceKG

Project Report For EE447: MOBILE NETWORKS, 2017-2018 Spring

Luhua Jin(with teammate Yuchen Yan)
515030910585(515030910564)

Supervisor: Prof. Xinbing Wang and Prof. Luoyi Fu
School of Electronic, Information and Electrical Engineering

Shanghai Jiao Tong University



1 Introduction

This project is based on Academic Knowledge Graph (AceKG), an academic semantic network,
which describes 3.13 billion triples of academic facts based on a consistent ontology, including
commonly used properties of papers, authors, fields of studies, venues, institutes and relations
among them.
Compared with other existing open academic KGs or datasets, AceKG has the following advan-
tages:
(1) AceKG offers a heterogeneous academic information network, i.e., with multiple entity cate-
gories and relationship types, which supports researchers or engineers to conduct various academic
data mining experiments.
(2) AceKG is sufficiently large (3.13 billion triples with nearly 100G disk size) to cover most in-
stances in the academic ontology, which makes the experiments based on AceKG more convincing
and of practical value.
(3) AceKG provides the entity mapping to computer science databases including ACM, IEEE and
DBLP, which helps researchers integrate data from multiple databases together to mine knowledge.
(4) AceKG is fully organized in structured triplets, which is machine readable and easy to process.

The main purpose of this project to further evaluate different state-of-the-art knowledge embedding
and network representation learning approaches to test the reliability of AceKG. In the end, some
promising methods to improve the performance of AceKG.

2 Basic Concepts of AceKG

2.1 Ontology

AceKG defines 5 classes of academic entities: Papers, Authors, Field of studies, Venues and
Institutes. Between two entities there is a relation. And the facts including the frequently used
properties of each entities and the relations between the entities are described as triplets in the
knowledge graph. Figure 1 briefly demonstrates the ontology of AceKG.

Figure 1: AceKG Ontology
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The statistics of AceKG are shown in Table 1. All the facts are represented as subject-predicate-
object triplets (SPO triplets).

2.2 Entity Alignment

A large part of papers is mapped in computer science of AceKG to the papers stored in IEEE, ACM
and DBLP databases. All the latest papers in these three databases have been aligned with AceKG.
Some mapping statistics are shown in Table 2.

2.3 Inference

In AceKG, there are some inference rules which have been designed. With these inference rules,
we can define the new relations on AceKG, which provides more comprehensive ground truth.

3 Knowledge Embedding

In this section, we will evaluate several state-of-the-art approaches for knowledge embedding using
AceKG.

3.1 Backgound

The target of knowledge embedding is to project triplets(h, r, t) in a given knowledge base to
d-dimensional vectors, where h, t ∈ E(set of entities) and r ∈ R(set of relations). We also defines
a scoring function to evaluate the plausibility of the triplet (h, r, t) in the knowledge base. There
are quite a few algorithms in knowledge embedding. Figure 2 gives a simple illustration of two
commonly used algorithms, transE[1] and transH[2]: TransE aims at connecting h, t by translation
vector and transH modifies TransE by embedding triplets on hyperplanes.
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Figure 2: transE and transH

3.2 Experiment Design

We study and evaluate related methods on link prediction proposed by Bordes et al. [1]: given one
of the entities and the relation in a latent triplet, it aims to predict the other missed entity. In stead
of using benchmark datasets FB15K[3] and WN18[4], we construct XK18K, a new benchmark
dataset extracted from AceKG for knowledge embedding. Table 3 shows the statistics of the
WN18, FB15K and XK18K. XK18K is sparser than FB15K but denser than WN18, and it provides
only 7 types of relations.We compare the following algorithms in our experiments: TransE[1],
TransH[2],DistMult[5], ComplEx[6], HolE [7].

3.3 Experiment Results

The results of the experiment is shown in table 4. We can divide the algorithms we use into two
classes:(1) traditional algorithms(transE, transH) and (2)compositional algorithms(DistMult, Com-
lEx, HolE). TransE outperforms all counterparts on hit@10 as 89.2%. Although 94.4% of rela-
tions in the knowledge base are many-to-many, TransE shows its advantages on modeling sparse
and simple knowledge base. On the other hand, ComlEx performs quite well when it comes to
hit@1(83.8%) and hit@3(87.1%). We hypothesize that it confirms their advantages on modeling
antisymmetric relations because all of our relations are antisymmetric.

4



4 Network Representation Learning

In this section, we will evaluate several state-of-the-art approaches for network representation learn-
ing (NRL) on AceKG.

4.1 Background

Network embedding assigns nodes in a network to low-dimensional representations and effectively
preserves the network structure and the content of the nodes. Figure 3 is a brief illustration of
the 2-dimensional representations of conferences after Network embedding. We evaluate related
algorithms including DeepWalk[8], PTE[9], LINE[10] and metapath2vec[11] on two tasks: scholar
classification and scholar clustering.

Figure 3: Network Embedding

4.2 Experiment Design

We select 5 fields of studies (FOS) from AceKG(Biology, CS, Economics, Medicine and, Physics)
and 5 main subfields of each field above. Then we extract all scholars, papers and venues in those
fields of studies respectively to construct 5 heterogeneous collaboration networks.
We also construct 2 larger academic knowledge bases: 1) We integrate 5 networks above into one
graph which contains all the information of 5 fields of studies; 2)Select art of related papers and
scholars in Google Scholar to construct one large heterogeneous collaboration networks.
The statistics of these networks are shown in Table 5.
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4.3 Experiment Results

(1) Classification
Logistic regression is applied for classification after network embedding. Table 6 shows the
classification results evaluated by Micro-f1 and Macro-f1. Metapath2vec performs relatively better
than other methods. The modified heterogeneous sampling and skip-gram algorithm may be the
reasons. We also notice that DeepWalk and LINE also perform well, showing their scalability
on heterogeneous networks. The reason may be that the kinds of relations are limited so that
homogeneous algorithm can also learn a comprehensive network representation.
Another interesting result is that there is significant performance gap between FOS-labeled datasets
and Google-labeled datasets. Since there are more cross-field papers and scholars in FOS-labeled
datasets than in Google-labeled ones, it adds up to difficulty of classification. For instance, a
professor is in CS but he publishes more papers in biology with AI algoritms than in CS, then our
classification may be wrong because we may mistake him as a biology scholar.
What’s more, cross-field papers and scholars also lead to differences of performance among differ-
ent fields with the same algorithm. For example, the highest Micro-F1 shows that the sub-fields of
Biology are the most independent, while the lowest Micro-F1 means that the sub-fields of CS cross
mostly.

(2) Clustering
K-means algorithm is applied for clustering after network embedding. Table 7 shows the clustering
results evaluated by normalized mutual information (NMI). Interestingly, we can draw similar
conclusions with the case of classification. Metapath2vec performs much better than the other
algorithms and the significant performance gap between FOS-labeled datasets and Google-labeled
datasets still exists. The reason may also be similar: the modified heterogeneous sampling and
skip-gram algorithm gives advantage to metapath2vec.
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5 Promising Methods

5.1 GAN Classification

In the paper of Salimans T. et al[12], an algorithm of node classification with ”GAN” based on
network embedding is proposed. Figure 4 demonstrates the framework of this algorithm. The core
theory of the algorithm is to use GAN to generate a new class of data and transform K-classification
to K+1-classification. This algorithm combines supervised learning and unsupervised learning.
In this case, the system can still learn the knowledge presentation even if some labels of data are
missed.

Figure 4: ”GAN” Classification

5.2 Struc2vec[13]

Structural identity is a concept of symmetry in which network nodes are identified according to
the network structure and their relationship to other nodes. struc2vec can be leveraged for this
task when labels for nodes are more related to their structural identity than to the labels of their
neighbors. In every field of study, there are scholars and papers with different ”levels”. Top scholars
are likely to have similar structural identity in the knowledge graph even if their distance is quite
large. With struc2vec, we can classify and cluster entities with different ”levels” in AceKG and
then we can construct a recommendation system with differen ”levels” by using the result.
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