
Influence Maximization in Social Networks under Linear

Threshold Model with Negative Opinion

Zilong Guo

May 27, 2018

Abstract

Influence maximization, which is first formulated by
Kempe, Kleinberg and Tardos, is the problem that find
a subset of nodes in a social network so that their total
influence reach the maximum under a certain influence
cascade model. In this paper, I first extend the clas-
sic linear threshold model defined by Kempe et al. and
take the commonly appeared negative opinions into con-
sideration. The model maintains some important prop-
erties such as submodularity and its behaviors of the
negative opinions are well corresponded to those in real
life. Then, I propose a efficient heuristic algorithm to
overcome the severe scalability problem encountered by
greedy algorithm, which can reduce the running time
from days to minutes without losing much of the per-
formance. In addition, I also show that the commonly
ignored evolution algorithm can outperform greedy algo-
rithm both in time complexity and performance, while
none of other algorithm could accomplish this as far as
I know.
Keywords: influence maximization, social networks,
negative opinion, linear threshold model

1 Introduction

Nowadays, with the development of social network
sites and applications like Facebook, Twitter, Wechat,
etc., people are connected more widely and closely. One
can have friends living in the opposite side of the earth
and communicate with them in every second. As a re-
sult, viral marketing, a strategy that promote products
through existing social networks, is getting more and
more attention by business companies. In fact, together
with the personalized recommendation, advertising to
the right person has become a critical and pervasive
problem for the industrial circle.

To tackle with the problem, Kempe et al. formu-
lated this as the influence maximization problem [1]
and proposed two basic models, the independent cas-
cade (IC) model and the linear threshold (LT) model.
Informally speaking, both model regard the social net-
works as directed or indirected graph G=(V, E), where
V and E represent the set of nodes and edges in the
graph respectively. The problem is to find an optimal
set of k node (seeds) such that their influence, which
is computed by some propagation rules, to the whole
graph is the largest. The influence is usually defined as
the number of activated nodes.

Those two model take a different view on how the
influence is spread. IC model defines the propagation
as a probabilistic process, in which each activated node
has a probability to activate its neighbor nodes. On the
contrary, LT model focus on the quantitative properties
of spreading. Each nodes in LT model have a amount
of influence to its neighbors and a node is activated if
the total influence of its neighbors reach a threshold. In
real world, those two view both stands. For example,
you may want to buy a new iPad when a friend of you
bought one and recommended it to you or when many
of you friends all bought one and you feel that you need
one too.

This problem has been applied in all kinds of works
especially for viral marketing and a lot of research about
it has been conducted [2, 3, 10, 8, 11, 5, 4, 9]. However,
most of them are concentrated on IC model and ignore
a critical fact that bad opinions can also propagate in
the social networks. As far as I know, only one heuristic
algorithm for LT model was proposed [4] and only two
paper consider the negative opinion [6, 7]. As a con-
trast, negative opinions are ineligible in real world. For
instance, when we shopping on Taobao, an e-shop plat-
form of Alibaba, the rates of commendation of goods are
vital to the decision of the customers. Usually, few peo-

1



ple will take the goods with a commendation rate under
90% into consideration. As a result, the shopkeepers will
use all kinds of method to avoid any negative comment
include but not limited to small refund and small gift.

In fact, the influence of negative opinions has long
been studied by sociologists [12, 13, 14]. Researchers
have shown that negative opinions usually have a much
stronger impact on people than positive opinions. And
people tend to believe the bad one when both negative
and positive opinions appear. So, it is reasonable and
inevitable to cover both positive and negative opinions
into the influence maximization problem.

In this paper, I first extend the classic linear thresh-
old model to the linear threshold model with nega-
tive opinion (LT-N), in which negative opinions emerge
and spread together with the positive opinions. Briefly
speaking, when a node is activated, it has a probabil-
ity q to have a good impression while has a probability
(1− q) to get annoyed. When a node is negatively acti-
vated, the influence to its neighbor reversed. A node is
activated when the sum of influence (both positive and
negative) of its neighbors exceed its threshold. Formal
description will be given in Sect 3.

The LT-N model reflects some real world phenom-
ena well. First, there must be a start point for the opin-
ions spread in the network. And negative opinions of-
ten come from bad experience after buying something
caused by product defects, transport accidents or picky
customers etc. So, it is reasonable to model that there is
a probability that the nodes turn negative after being ac-
tivated. Besides, a small amount of negative comments
for one merchandise won’t prevent one from buying it
totally. A product with enough large proportion of pos-
itive comments can still be a good choice. So, in LT-N
model, both positive and negative opinions are consid-
ered when activated a node.

Second, I will give some analysis about LT and LT-
N model and shows that both of them are NP-hard prob-
lems. Some important properties especially submodu-
larity are proved. And as a result, a greedy algorithm
holds an 1-1/e approximation.

However, greedy algorithm faces a severe efficiency
problem and is not scalable. Fortunately, [4] shows that
we can compute the influence in linear time in a directed
acyclic graphs (DAGs). Inspired by this, we can con-
struct a local DAG for every nodes in G and compute
their influence in the local DAG. Then we can use the
influence in local DAG as an approximation or heuristic
function for the influence originally evaluated by Monte-

Carlo simulation in greedy algorithm. Incorporating the
effects of negative opinion, I propose a modified LDAG
algorithm LDAG-N and show that it achieves a signifi-
cant improvement in time complexity with some tricks,
which could reduce the running time for some graph
from days to minutes.

What’s more, I will show that the commonly ig-
nored evolution algorithm (EA) [16, 15] could outper-
form greedy algorithm both in time complexity and total
influence, while all of the algorithm designed for influ-
ence maximization problem regard greedy algorithm as a
upper-bound and none of them exceed its performance.
Together with the LDAG-N, evolution algorithm can be
very fast and efficient at the same time.

All of those three algorithm will be formally dis-
cussed in Sect 4. In the end, some extensions of the
model and the effects and social meaning of q are dis-
cussed in Sect 6.

In short, the paper is organized as follow: Sect 2,
related works; Sect 3, model definition and analysis;
Sect 4, influence computation algorithms; Sect 5, ex-
periments; Sect 6, extensions; Sect 7, conclusion.

2 Related Work

Influence maximization was first studied by Domin-
gos and Richardson [17, 18]. They modeled the problem
as a Markov random field. Then, in 2003, Kempe et al.
gave a discrete optimization formulation to this prob-
lem and dug out a dozen of properties including the
submodularity, which result in a 1-1/e approximation
greedy algorithm. After they gave the elegant defini-
tion, researchers are mainly concentrated in two aspect
of this problem: give better algorithm [2, 3, 8, 4, 5, 9]
and extend the two basic model [6, 19].

For general greedy algorithm, Leskovec et al pro-
pose a trick called ”cost-efficient lazy-forward” (CeLF)
and achieve a acceleration up to 700 times [2]. Goyal A
et al. further improved CeLF to Celf++ [3] and gained
an additional 55% speed up. However, even CeLF++
is still not capable of running in a graph with millions
of points. It still takes hours to compute in NetHEPT
dataset, which has 15k nodes and 37k edges.

Then, many heuristic algorithm are proposed in or-
der to replace the time consuming MC simulations in
greedy algorithm and under-performing degree and cen-
trality heuristic function. Maximum influence arbores-
cence (MIA)[5], which takes the advantage of local tree

2



structure, and degree discount, which taking neighbors’
degree into consideration, proposed by Chen et al. are
the most famous and efficient ones. However, all of them
are for IC model. In fact, only two algorithms are pro-
posed for LT model: Sharply-value-based SPIN [20] and
heuristic algorithm LDAG [4].

Although heuristic algorithms are usually efficient
enough, some researchers proposed some randomized al-
gorithm [9] to achieve better efficiency.

As for negative opinions, only [6] and[7] had dis-
cuss them in influence maximization problem. However,
[7] failed to reflect real-world phenomena and [6] didn’t
consider the mixing effect of positive and negative opin-
ions.

What’s more, evolutionary algorithm is power-
ful tool for discrete optimization problems with ex-
treme large search space. For example, the state-
of-the-art result of image classification on benchmark
datasets(CIFAR-10 and ImageNet) are achieved by ar-
chitecture designed by evolution [21]. However, it gets
less and less attention these days for more and more
people pay their attention to deep learning.

3 Linear Threshold Model With
Negative Opinion

I first give a formal description about LT-N model,
and then discuss some properties of the model.

3.1 Model Definition

Social networks are modeled as a directed graph
G = (V,E), where V and E represents the set of nodes
and edges in the graph respectively. Each edge in G
has a weight w. For any in-activated vertex u, v that
(u, v) ∈ E, 0 < w(u, v) ≤ 1. And for any in-activated
node v,

∑
u:(u,v)∈E w(u, v) ≤ 1. And each node v has a

threshold λv which 0 < λv ≤ 1. Beside, a satisfaction
probability q is introduced as the probability that one
nodes get positive opinion after being activated. If an
activated node gets negative opinion, its influence turn
negative.

The dynamic of influence spread is as follow: in
time step t, for all the in-activated neighbor of nodes
that is activated in t− 1, compute the influence of their
activated neighbors. Denote PN(v) and NN(v) as the
positive and negative activated neighbor of v If for node
v,

∑
u:u∈PN(v) w(u, v)−

∑
u:n∈NN(v) w(u, v) ≥ λv, then

v is activated. More specifically, v is positive activated
with a probability q and negative activated with a prob-
ability 1− q.

The problem is to find a subset of nodes S with a
cardinality of k so that the number of positive activated
nodes Inf(S) reach the maximum.

Figure 1: A simple example

3.2 Model Analysis

Even the influence maximization in original LT
model is proved to be NP-hard. Luckily, we have a
important property called submodularity in IC and LT
model. Formally speaking, we says function f is sub-
modular if for any set S ⊆ T ⊆ V and node u ∈ V T ,
f(S ∪ u) − f(S) ≥ f(V ∪ u) − f(V ). And IC and LT
model also have monotonicity for f(S) ≤ f(T ).

Claim 1 LT-N is monotone and submodular when
q > 0.5.

However, for LT-N is a model about quantity and
threshold, it is hard for us to analyze it directly. So, we
need to have a alternative view about this problem.

Claim 2 The influence spread in LT-N equivalent to
the following process: in time step t, if a node v has a
new positive activated nodes, randomly select one edge
with each edge (u, v) such that u not in A1:t−1 with a
possibility

w(u, v) ∗max(0,

∑
u:u∈Ap

t
w(u,v)−

∑
u:n∈An

t
w(u,v))∑

u:u∈Ap
t
w(u,v) )

1−max(0,
∑
u:u∈Ap

1:t−1
w(u, v)−

∑
u:n∈An

1:t−1
w(u, v))

(1)

where At is the nodes that are activated in time-step
t and Ap, An represent the positive and negative acti-
vated nodes. (Note that there is a possibility that no

3



edge is selected) If the selected u ∈ A and is positively
activated, then keep the edge. And assign v as negative
node with probability 1 − q. Otherwise, wait for next
new activated neighbor.

Note that in time step t, for a in-activated node v,
the probability of v being activated in time step t+ 1 is

max(0,
∑
u:u∈Ap

t
w(u, v)−

∑
u:n∈An

t
w(u, v))

1−max(0,
∑
u:u∈Ap

t−1
w(u, v)−

∑
u:n∈An

t−1
w(u, v))

(2)

which is exactly the probability that the selected edge
is adjacent to Ap. So, we successfully transfer the origin
problem into a connectivity problem in a special random
graph X, which is the end state of the random process.

Lemma 1 Inf(S) for a fixed outcome X (InfX(S)) is
submodular.

This lemma is proved by Kempe et al [1]. We can
simply see that comparing with adding v to S where
S ⊂ T , the newber of newly reachable nodes from adding
v to T is at most equal, for some of the nodes is already
reachable from T .

Finally, we have

Inf(S) =
∑
X

P (X) ∗ InfX(S) (3)

where P (X) is the probability of outcome X. A linear
combination of submodular function still holds sumod-
ularity.

As for monotonicity, we can see from the process
above. Considering one activating nodes v and q = 0.5,
it is activated positively with a probabililty of 0.5. So,
the one step influence of v is expected to be 0. And as
we can see from (2), the state of v has a linear influ-
ence on its neighbor, which still have zero expectation
on whether it is activated. So by induction, the expected
influence of adding v is 0. However, it’s apparent that
the influence grows as q gets bigger. So Inf is monotone.

Lemma 2 For any monotone and submodular set
function f with f(∅) = 0, the greedy algorithm is
1− 1/e approximation.

Proof was shown in[23]. And as a result, greedy
algorithm is guaranteed to have a 1−1/e approximation
result.

4 Influence Computation

4.1 Greedy Algorithm

The greedy algorithm is quite straightforward. The
idea is select the node that maximize the additional in-
fluence in each step. And the influence is evaluated by
Mont-Carlo simulations. Each simulation is O(m) where
m is te number of edges. And in each round, all the n
nodes need to be simulated for R times. So, the time
complexity is O(knRm).

Algorithm 1 Greedy Algorithm

1: S = ∅
2: for i=1 to k do
3: u = argmaxuInf(S ∪ {u})
4: S = S ∪ {u}
5: end for
6: return S

4.2 LDAG-N

To overcome the inefficiency of greedy algorithm,
heuristic functions are used to replace the simulation.
In the following, I will first show that the influence of a
activated nodes decays exponentially. So, it is reason-
able to use the local influence as an approximation of the
global influence. And then, algorithm 2 shows that the
influence in DAG can be compute in linear time. Sect
4.2.2 illustrate the whole algorithm. Sect 4.2.3 gives the
time complexity. What’s more, a trick for complexity
optimization is also shown in Sect 4.2.3.

4.2.1 Influence in DAGs

As discussed above, LT-N model can be viewed by
a probabilistic problem. Here, we explore it further. Let
Pa(v) be the probability that v is activated in a DAG D
given the seed set S. We can see that

Pa(v) =max(0,
∑

u∈Nin(v)

qPa(u) ∗ w(u, v)

−
∑

u∈Nin(v)

(1− q)Pa(u) ∗ w(u, v))

=(2q − 1)
∑

u∈Nin(v)

Pa(u) ∗ w(u, v)

(4)

where Nin(v) is the set of in neighbors of v and for q >
0.5. And Pa(u) for u ∈ S are initialized to be 1. It is easy

4



to see that this equation holds true from a probability
view.

We can also see that

Inf(S) =
∑
v∈V

qPa(v) (5)

Noticing that Pa(v) decays exponentially by constantly
products (2q − 1) and Pa(u) as v goes further from S.
So, the influence far from S can be ignored. As a result,
only consider the local influence becomes reasonable.

With the formulation (4), we can use dynamical
programming to compute all Pa(v) in DAG in a topo-
logical order and add them up to get the influence.

Algorithm 2 DAG influence

Require: D, S, x
1: ∀u ∈ D, Pa(u) = 0
2: ∀u ∈ S, Pa(u) = 1
3: ρ = topo-sort(D, S)
4: for v in ρ do
5: Pa(v) = (2q − 1)

∑
u∈Nin(v)

Pa(u) ∗ w(u, v)
6: end for
7: return Pa(x)

4.2.2 LDAG-N algorithm

Now that we could compute the influence in DAGs
efficiently, the problem comes to how to construct a local
DAG in the general graph. [4] formulate this problem
as MAX-LDAG problem: given a graph G(V,E,w),
a node v ∈ V and a threshold θ > 0, find a DAG D =
(X,Y,w), such that (a) D is a subgraph of G;(b) v ∈ X;
(c) I(u, v) ≥ θ for all u ∈ X where I(u, v) is the influence
probability from u to v; (d)

∑
I(u, v) is the maximum.

Unfortunately, this problem is also NP-hard. And
we can only use a greedy algorithm without any approx-
imation guarantee. In the greedy algorithm, we con-
stantly add the neighbor nodes of D with the maximum
influence probability until none of the nodes satisfies the
threshold. So, the whole LDAG-N algorithm comes as
follow:

In algorithm 4, for the DAGs are local DAGs,
adding a node to S doesn’t mean all the influences are
changed. Only the DAGs that include u need to be up-
date. However, this is still not efficient enough. I will
briefly talk about a trick for updating influence in below.

Algorithm 3 Find DAG

Require: G, v, θ
1: X = Y = ∅
2: ∀u ∈ V , I(u, v) = 0
3: I(v, v) = 1
4: while maxu∈V XI(u, v, ) ≥ θ do
5: x = argmaxu∈V XI(u, v, ) ≥ θ
6: Y = Y ∪ (x, u)|u ∈ X
7: X = X ∩ x
8: for u in Nin(x) do
9: I(u, v)+ = w(u, x) ∗ I(x, v)

10: end for
11: end while
12: return D(X,Y )

Algorithm 4 LDAG-N without trick

1: S = ∅
2: for v in V do
3: D(v) = Find DAG(G, v, θ)
4: Inf(v) =

∑
u:v∈DAG(u) DAG inf(D(u), {v})

5: end for
6: for i=1 to k do
7: u = argmaxuInf(v)
8: S = S ∪ u
9: for v : u ∈ D(v) do

10: Inf(v) =
∑
u:v∈DAG(u)DAG inf(D(u), S +

{v})
11: end for
12: end for
13: return S

4.2.3 Algorithm complexity

Let nθ, mθ denote the max number of nodes and
edges in local DAGs. To compute the local DAGs,
we need O(nmθ) time. And in each round, about
nθ nodes need to recompute their influence. Each
node need a O(nθmθ) time for computing DAG influ-
ence for nθ nodes. So the total time complexity is
O(nmθ + knθnθmθ)

Although this algorithm reduce the complexity sig-
nificantly by only focus on the local DAG, it is still not
efficient enough. So, here is a trick.

If we expend the formulation (4), we can find that
Pa(v) is a linear combination of linear combination for
Pa(u) the influence from u to v can be expressed as
Pa(u)α where α is a coefficient to show the linear in-

5



fluence caused by u. If we maintain all the Pa(u) and
α(u, v) explicitly, we can use Pa(u) and α(u, v) update
influence efficiently. We can reduce the time for updat-
ing from O(nθmθ) to (mθlogn) for logn is the overhead
of adjust the heap used for argmax, which is hidden be-
hind of Inf recalculation in the algorithm without trick.

4.3 Evolutionary algorithm

Evolutionary algorithm is a framework of discrete
optimization, which is inspired by theory of evolution.
Despite its simplicity, it works well in some tasks. So,
EA is used here to get over the 1− 1/e bound of greedy
algorithm. For EA, three important components are in-
cluded: (a) population (b) mutation; (c) crossover; (d)
selection.
population The population is the set of possible S.
mutation There is a chance of change some nodes s ∈ S
in reproduction.
crossover Select a pair of parents S1, S2. Take the first
i s in S1 and last k − i s in S2 to form a new S.
selection Only the top Ss will be kept for the next gen-
eration.

What’s more, from the 700 times speed-up achieved
”lazy-forward” [2], we can know that even if the influ-
ence of a certain node decreases when S expend, most
of the selected nodes have a strong influence when S is
empty. So, we can test influence for all the nodes at
the beginning, and let the population select only from
the top nodes, which will significantly reduce the search
space.

Algorithm 5 Evolutionary Algorithm

1: for v in V do
2: compute Inf(v)
3: end for
4: elite nodes = Top(V)
5: population = Init population(elite nodes) //gen-

erate population randomly
6: for i=1 to rounds do
7: population += reproduce(elite nodes) // in-

clude crossover and mutation
8: Sort(population)
9: population = Top(population)

10: end for
11: return population[0]

Note that no appointed method to compute influ-
ence. So this algorithm is applicable to both Mont-Carlo

simulation and heuristic functions.
EA has no guarantee of approximation bound and

running time bound. But it is the only algorithm that
view the k nodes as whole instead of a gradual process
of adding nodes, which means that it have the chance
to handle the interaction within S. And the experiments
prove its efficiency.

5 Experiment

5.1 Experiment setting

Before conducting experiment for different algo-
rithms, some setting should be determined. This in-
cludes way of generating weight, simulation rounds
for Greedy algorithm and simulation-based EA, q and
threshold for LDAG-N.
weight There are two popular way of generating weights
on edges: random and uniform, where uniform means
giving each in-edge a weight of 1/in-degree. Greedy al-
gorithm is test on a co-author graph of 1000 authors on
arXiv physic section with different weights. The result
figure 2 shows that they don’t influence the result much.
So, in the rest experiment, uniform weights are used.

0 5 10 15 20

number of seeds

0

20

40

60

80

100

120

In
f

random
uniform

Figure 2: Differnece of Weights

simulation rounds The outcomes of simulation have
a enormous variance. Take one result of EA in ca-GrQc
[22] for k = 30 as a example. The result could range
from 100 to more than 600. And the mean of the simu-
lations are shown in figure 3. Kempe et al. recommend
to take average of 10000 simulations. However, due to
the computation resource, I finally choose to simulate
200 times.
q and threshold q and threshold are 0.9 and 1/640 as

6



0 200 400 600 800 1000

Rounds

300

310

320

330

340

350

360

In
f

step mean
2% error
final mean

Figure 3: Mean of Simulations

default. the effect of q is discussed in extension.

5.2 Experiment for algorithms

A random graph with 30 nodes, 120 edges, arXiv
physic co-author graph and the full ca-GrQc are used
in the following experiment. And all the figures are
about ca-GrQc for it is real and the largest (5424 nodes
and 14496 undirected edges) among these three dataset.
Random algorithm (choose nodes randomly) and degree
algorithm (choose the nodes with largest out-degree) are
also testes as a comparison. All the algorithm except EA
are tested for k range from 1 to 30. And EA is only eval-
uated for k=10, k=20 and k=30. The result is shown in
figure 4

0 5 10 15 20 25 30

number of seeds

0

100

200

300

400

500

In
f

degree
greedy
LDAG-N
random
EA

Figure 4: Performance

We can see that random and degree algorithm don’t
work well. Greedy algorithm ranks first until k = 8.
And it become a little bit unstable when k > 15. This
is because of the insufficient simulation (See Extension).

LDAG-N works well for all the k. However, for any
tested k, EA always gets the best result. Although insuf-
ficient simulation could also influence its performance,
however, different from greedy algorithm, all the nodes
are select at once. So, the bias won’t accumulate and
the error is expected to be within 2%.

0 10 20 30 40 50

number of seeds

0

100

200

300

400

500

In
f

EA k=10
EA k=20
EA k=30

Figure 5: Convergence of EA

Before having a look at the running time, let us first
give a glance to the running curve of EA. As shown in
figure 5, all of the experiment is almost converge before
round 25. So the running time of EA is the time for first
25 rounds.

Algorithm Time/min Relative Time
Greedy 2246.3 1

EA 148.6 0.066
LDAG-N 1.38 0.00062

Table 1: Time for k=30

As for the running time, greedy algorithm is almost
unbearable. Considering it high performance, the run-
ning time for EA is much better. It seems that only
LDAG-N is scalable to millions of nodes (Note that its
time complexity is linear to n if mθ remains the same).
However, EA is easy to compute in parallel. So it is still
applicable to millions of nodes if more CPU are used.

All of the experiment is running on a personal com-
puter with one intel core i7-4790k using Python.

6 Extension

In this section, I will give some more brief analysis
to the influence of simulation for greedy algorithm and
negative opinions in LT-N model.

7



First, let us have a look at figure 4. The curve of
greedy algorithm become fluctuate when k > 10. This
is because the high variance make some bad nodes looks
good within these 200 simulations and chosen. How-
ever, in latter rounds, the bad can’t influence a large
amount of nodes, so it reduce the performance of all the
latter round. What’s worse, this poor performance is
accumulated in each round. So, the performance gap is
widened again and again. With the restriction of com-
puter resources, a small experiment for 20, 200 and 400
simulations is conducted and the result is shown in figure
6 This phenomena is also verified by Chen et al in [4].
When the number of simulation reach 20000, the perfor-
mance of simulation-based greedy algorithm exceed all
the heuristic ones in LT model.

0 5 10 15 20

number of seeds

0

50

100

150

200

250

300

In
f

20 simulation
200 simulation
400 simulation

Figure 6: Influence of simulation

Experiment has been conducted about different q.

0 5 10 15 20 25 30

number of seeds

0

100

200

300

400

500

600

700

In
f

q=0.55
q=0.7
q=0.9
q=0.99

Figure 7: Influence of q

The result is in great accordance with our expecta-

tion. Influence goes down as q goes to 0.5.
However, what if the negative opinion have a weight

other than the opposite number of positive opinion?
Generally, the monotonicity no longer holds in the model
for the linearity of the influence no longer holds. As a
result, greedy algorithm won’t give any approximation
guarantee. This shows that the LT-N model have a bal-
ance in model complexity, expressiveness and tractabil-
ity.

What’s more, what if there is a negative threshold
so that one node is sure to propagate negative opinion
when the total weight of negative opinion exceed the
threshold? This model is yet to be analysis.

7 Conclusion

In this paper, a Linear threshold model with neg-
ative opinion for influence maximization is proposed,
which has a strong connection with the real world adver-
tising and capture the character of the mental activity
of customers. This model keeps the important proper-
ties of monotonicity and submodularity, which result in
a 1-1/e approximation guarantee for greedy algorithm.
Then, to tackle with the efficiency and quality problem,
LDAG-N and EA are proposed or used in this problem.
Both of them outperform greedy algorithm in speed, EA
achieve the best performance and LDAG-N is scalable
to larger dataset.

Acknowledgement

This project is a course project in Wireless course
given by Prof. Wang and Prof. Fu. Thanks teachers
and TAs for helping me discover and study this topic.

8



References

[1] Kempe D, Kleinberg J, va Tardos. Maximizing
the spread of influence through a social net-
work[C]// ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining.
ACM, 2003:137-146.

[2] Leskovec J, Krause A, Guestrin C, et al. Cost-
effective outbreak detection in networks[C]//
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM,
2007:420-429.

[3] Goyal A, Lu W, Lakshmanan L V S. CELF++:
optimizing the greedy algorithm for influence max-
imization in social networks[C]// International
Conference Companion on World Wide Web.
ACM, 2011:47-48.

[4] Chen W, Yuan Y, Zhang L. Scalable Influence
Maximization in Social Networks under the Linear
Threshold Model[C]// IEEE International Confer-
ence on Data Mining. IEEE Computer Society,
2010:88-97.

[5] Chen W, Wang C, Wang Y. Scalable influence
maximization for prevalent viral marketing in
large-scale social networks[C]// ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining. ACM, 2010:1029-1038.

[6] Chen W, Collins A, Cummings R, et al. Influence
Maximization in Social Networks When Negative
Opinions May Emerge and Propagate[J]. Journal
of China University of Petroleum, 2010:379-390.

[7] Ma H, Yang H, Lyu M R, et al. Mining social net-
works using heat diffusion processes for market-
ing candidates selection[C]// ACM Conference on
Information and Knowledge Management. ACM,
2008:233-242.

[8] Chen W, Wang Y, Yang S. Efficient influence max-
imization in social networks[C]// ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining. ACM, 2009:199-208.

[9] Hu Q C, Zhang Y, Xu X H, et al. A new approach
for influence maximization in complex networks[J].
Acta Physica Sinica, 2015, 64(19).

[10] Wang Y, Cong G, Song G, et al. Community-
based greedy algorithm for mining top-K influ-
ential nodes in mobile social networks[C]// ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2010:1039-
1048.

[11] Kempe D, Kleinberg J, va Tardos. Influen-
tial Nodes in a Diffusion Model for Social
Networks[C]// International Colloquium on Au-
tomata, Languages, and Programming. Springer,
Berlin, Heidelberg, 2005:1127-1138.

[12] Baumeister R F, Bratslavsky E, Finkenauer C, et
al. Bad is stronger than good[J]. Review of General
Psychology, 2001, 5(4):477-509.

[13] Rozin P, Royzman E B. Negativity Bias, Negativ-
ity Dominance, and Contagion[J]. Personality &
Social Psychology Review, 2001, 5(4):296-320.

[14] Taylor S E. Asymmetrical effects of posi-
tive and negative events: The mobilization-
minimization hypothesis.[J]. Psychological Bul-
letin, 1991, 110(1):67-85.

[15] Vikhar P A. Evolutionary algorithms: A critical
review and its future prospects[C]// International
Conference on Global Trends in Signal Process-
ing, Information Computing and Communication.
IEEE, 2017:261-265.

[16] Bck T. Evolutionary algorithms in theory and
practice: evolution strategies, evolutionary pro-
gramming, genetic algorithms[M]. Oxford Univ.
Pr, 1998.

[17] Domingos, Pedro, Richardson, et al. Mining the
network value of customers[J]. 2001.

[18] Richardson, Matthew, Domingos, et al. Min-
ing knowledge-sharing sites for viral marketing[J].
2002.

[19] Chen W, Lu W, Zhang N. Time-Critical Influ-
ence Maximization in Social Networks with Time-
Delayed Diffusion Process[J]. Chinese Journal of
Engineering Design, 2012, 19(5):592-598.

[20] Narayanam R, Narahari Y. A Shapley Value-
Based Approach to Discover Influential Nodes in
Social Networks[J]. IEEE Transactions on Au-
tomation Science & Engineering, 2010, 8(1):130-
147.

9



[21] Real E, Aggarwal A, Huang Y, et al. Regular-
ized Evolution for Image Classifier Architecture
Search[J]. 2018.

[22] J. Leskovec, J. Kleinberg and C. Faloutsos. Graph
Evolution: Densification and Shrinking Diame-
ters. ACM Transactions on Knowledge Discovery
from Data (ACM TKDD), 1(1), 2007.

[23] Nemhauser G L, Wolsey L A, Fisher M L. An anal-
ysis of approximations for maximizing submodu-
lar set functionsI[J]. Mathematical Programming,
1978, 14(1):265-294.

10


