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Abstract—The mining process in blockchain requires solving a
proof-of-work puzzle, which is resource expensive to implement
in mobile devices due to the high computing power and energy
needed. Meanwhile, Mobile edge computing (MEC) providing
information technology and cloud-computing capabilities within
the radio access network is an emerging technique in fifth-
generation networks. In this paper, we consider Mobile edge
computing as an enabler for mobile blockchain. In order to
minimize the energy consumption on miners, we jointly op-
timize the offloading selection, radio resource allocation, and
computational resource allocation coordinately. We formulate the
energy consumption minimization problem as a mixed interger
nonlinear programming problem, which is subject to specific
application latency constraints. We show by simulation that the
joint offloading task execution is more energy-efficient than local
execution and remote execution for miners.

Index Terms—mobile blockchain, proof-of-work puzzle, Mobile
edge computing, computation offloading, energy minimization,
mining, game theory.

I. INTRODUCTION

Electronic trading with digital transactions is becoming
popular than ever in e-commerce society, where the consen-
sus is reached through trusted centralized authorities. The
introduction of centralized authorities incurs additional cost,
i.e., nominal fees which become more excessive when the
number of digital transactions becomes large. In 2008, a new
peer-to-peer electronic payment system called Bitcoin was
introduced that avoids this additional cost caused by digital
transactions. As one popular digital cryptocurrency, Bitcoin
can record and store all digital transactions in a decentralized
append-only public ledger called blockchain. The Bitcoin is
the first application of blockchain technologies. Subsequently,
the blockchain technologies have generated remarkable public
interests via a distributed network with independence from
central authorities. With blockchain, a transaction can take
place in a decentralized fashion, which greatly save the cost
and improve the efficiency. Since its launch in 2009, Bitcoin
economy has experienced an exponential growth, and its
capital market now has reached over 70 billion dollars.After
the success of Bitcoin, blockchain has been applied in many
applications, such as access control systems, smart contracts,
content delivery networks, cognitive radio networks, and smart
grid powered systems.

The core issue of the blockchain is a computational process
called mining, where the transaction records are added into the
blockchain via the solution of computational difficult problem,
i.e., the proof-of-work puzzle. Confirming and securing the
integrity and validity of transactions are processed by a set

of participants called miners. However, blockchain has not
been adopted widely in mobile applications. This is because
blockchain mining needs to solve a proof-of-work puzzle,
which is expensive to implement in mobile devices due to the
high computing power needed. Thus, deploying blockchain
in a mobile environment is truly challenging. So, numerous
efforts have been made by researchers from academia and
industry to design the fifth generation (5G) mobile commu-
nication with the advance of network technologies and the
innovation of mobile services to solve the energy consumption
problem. One of the prominent characteristics of 5G is strong
data processing capability in order to cope with increasing
content requests. People make continuous efforts on mobile
network operators and network equipment vendors to enhance
the wireless link bandwidth. In addition, large number of IoT
terminal equipments are applied to various vertical industries.
However, this migration not only increase the network load but
also causes the delay fluctuation which influences the latency-
sensitive application.In order to increase the bandwidth and
decrease the latency, energy consumption and network load
for computation offloading, European Telecommunications
Standards Institute (ETSI) has proposed a promising approach,
Mobile Edge Computing (MEC). In this paper, we consider
MEC as a network enabler for the mobile blockchain.

In the MEC framework, cloud computing capabilities are
provided within the Radio Access Network (RAN) in close
proximity to miners need to solve the mining problem. In the
computation offloading of MEC, a mining problem can be
executed on the mobile application (local execution), or on
the MEC server (edge execution). Due to the short distance
between the MEC server and SMDs, the MEC paradigm can
provide low latency, high bandwidth and computing agility in
computation offloading. However, both radio and computation-
al resources are limited in MEC. Motivated by the differences
between MEC and traditional MCC, we dedicate to design a
computation offloading mechanism for MEC. In this paper, we
investigate an energy minimization problem, which is subject
to specified delay constraints, in order to optimizes offloading
selection, radio resource allocation and computation resource
allocation jointly. We learn an algorithm to solve the problem
with adjustable solving accuracies. The main contributions of
this paper are as follows:

1) : We adopt offloading to MEC server to solve the mining
problem in blockchain. we consider Mobile edge computing
as an enabler for mobile blockchain. In order to minimize
the energy consumption on miners, we jointly optimize the



offloading selection, radio resource allocation, and compu-
tational resource allocation coordinately. We formulate the
energy consumption minimization problem as a mixed interger
nonlinear programming problem, which is subject to specific
application latency constraints.

2) : To effectively save energy consumption on miners,
we jointly optimize the offloading selection, radio resource
allocation and computational resource allocation coordinately
in the energy minimization problem. To the best of our
knowledge, there are few works optimizing these three aspects
jointly to minimize the energy consumption in a multi-users
system.

3) : We learn a Reformulation-Linearization-Technique
based Branch-and-Bound method (RLTBB) with adjustable
solving accuracy to solve the energy minimization problem.We
show by simulation that the joint offloading task execution
is more energy-efficient than local execution and remote
execution for miners.

The rest of the paper is organized as follows.In Section
II, we review related work. In Section III, we present the
system model of mobile blockchain with MEC computation
offloading and formulate the energy minimization problem as
an MINLP problem. In Section IV, we analyze the optimal
distribute of task for miners in detail. In Section V,we present
the simulation results. Finally, the conclusion is drawn in
Section VI,.

II. RELATED WORK

Recently,there have been several studies on mining schemes
management for blockchain network. In [1], the authors de-
signed a noncooperative game among the miners, i.e., the
players. The miners strategy is to choose the number of
transactions to be included in a block. In the model, solving
the proof-of-work puzzle for mining is modeled as a Poisson
process. The solution of the game is the Nash equilibrium
which was derived only for two miners in [1]. Then, the
authors in [2] modeled the mining process as a sequential game
where the miners compete for mining reward in sequentially
among them. In the game model, the miners are assumed
to be rational, and they have to choose whether or not to
propagate their solution, i.e., the mined block. It is proved
in [2] that there exists a multiplicity of Nash equilibrium.
Further, it is found that not propagating is an optimal strategy
under certain conditions. Similar to that in [2], the authors in
[3] formulated the stochastic game for modeling the mining
process, where miners decide on which blocks to exten-
dandwhethertopropagatetheminedblock.Inparticular, two game
models in which miners play a complete information stochastic
game are studied. In the first model, each miner propagates
immediately the mined block that it mines. The strategy of
each miner is to select an appropriate block to mine. In the
second model, the miner selects which block to mine, but
it may not propagate its mined block immediately. For both
models, it is proved in [3] that when the number of miners is
suf?ciently small, the Nash equilibrium with respect to mining
behaviors exists.

To reduce the energy consumption and latency in com-
putation of?oading, ETSI proposed MEC which can provide
Information Technology (IT) and cloud-computing capabilities
within the RAN in close proximity to mobile subscribers [4].
Recently, there are some works [5] to [7] on computation
of?oading in MEC with various objectives.[5] developed an
of?oading framework, named Ternary Decision Maker (TDM),
which aimed to shorten response time and reduce energy
consumption at the same time. A more flexible execution
environment for mobile applications was adopted. On account
of the comprehensive modeling and the practical simulation
environment, [5] gave good contributions on computation of-
floading. However, [5] considered the single user scenario,and
would be better to extend to the multiuser scenario. [6]in-
corporated dynamic voltage scaling(DVS) into computation
of?oading in a single-user scenario. They investigated partial
computation of?oading by jointly optimizing the computation-
al speed of SMD, transmit power of SMD, and offloading ra-
tio. An energy-optimal partial computation offloading(EPCO)
algorithm was proposed to solve the nonconvex energy con-
sumption minimization problem. Furthermore, a local opti-
mal algorithm was proposed to handle the nonconvex and
nonsmooth latency minimization problem.Youetal. [7]studied
resource allocation for a multiuser mobile-edge computation
of?oading (MECO) system based on time-division multiple
access (TDMA) and orthogonal frequency-division multiple
access (OFDMA) to minimize the mobile energy consumption.
[7] gave comprehensive modeling analyses. Moreover, for the
TDMA MECO system with in?nite computation capacity, an
optimal policy was designed. For the TDMA MECO system
with ?nite computation capacity and the OFDMA MECO sys-
tem,respectively, two sub-optimal algorithms were designed.
But [6], [7] concentrated on the offloading proportion of
users mainly, and ignored the joint optimization of radio and
computational resources.

In the cloud platform, the data stored in the semi-trusted
parties is not safe. To guarantee the confidentiality, integrity
and availability of information, it is necessary to encrypt
owner’s information. Also, attribute-based encryption (ABE)
is one of the most popular schemes used in cloud computing
[8]. It provided a design and implementation of self-protecting
digital information using attribute-based encryption on mobile
devices [9]. The system is designed to provide fine-grained
encryption and is able to protect individual items within a
record, where each encrypted item may have its own access
control policy. Li et al. proposed a novel patient-centric
framework and a suite of mechanisms for data access control
to personal health records (PHRs) stored in semitrusted servers
[10]. They leverage ABE techniques to encrypt each patient’s
PHR file, focus on the multiple data owner scenarios and
divide the users in the PHR system into multiple security
domains that greatly reduces the key management complexity
for owners and users. These schemes improve ABE steadily
ceaselessly, protecting people’s privacy greatly. However, ABE
is not perfect. It has several disadvantages. For example, once
a user modifies his access polices, that is, the system needs



to execute attribute revocation and encrypt data again based
on new attribute sets. This results in extra computational
expenditures and slows down the efficiency of the system,
especially in papers [11],[12].

III. SYSTEM MODEL

We consider a system model like this, where miners can
offload their mining computation tasks to the MEC server
through a cellular network. The set of miners can be denoted
as N = {1, 2, ..., N}.

Each miner i has a mining computation task Ai =
(Di, Ci, T

th
i ), where Di denoted the size of mining com-

putation input data including system settings, program codes
and input parameters, Ci denotes the number of CPU cycles
required to accomplish the mining computation task, and T thi
denotes the corresponding delay constraint.

All the mining tasks can be divided into subtasks. And each
computation task can be either executed locally or offloaded to
MEC. We define the offloading vector as α = [α1, α2, ..., αN ].
If task Ai is executed locally, then αi = 0, else αi = 1.

A. Local Execution Model

We define f li as the local computation capability we paid,
then the local compute time for mobile i becomes

tli = (1− αi)
Ci
f li

(1)

and corresponding energy consumption of miner i is

eli = (1− αi)κ(f li )2Ci (2)

where κ is the effective switched capacitance depending on the
chip architecture. We set κ = 1026 according to the practical
measurement. Considering that the energy consumption grows
with the allocated CPU-cycle frequency, we can minimize the
energy consumption by controlling αi.

B. Computation Offloading Model

The computation offloading process can be divided into
three steps:

(1) The mobile user i uploads to MEC server through the
uplink channel;

(2) MEC server compute the mining task on behalf of the
mobile miner i;

(3) MEC server transmits output data back to the mobile
miner.

In this case, we assume the output data result is much more
smaller than the input data size, so we ignored the step(3),
just consider step(1) and step(2).Compared with the local
computation, offloading saves the energy of mobile miner, but
spends additional time and energy in uplink transmission. And
the intracell interference of offloading will increase energy
consumption as well.

In order to concentrate more on the algorithm design, we
assume tasks are admitted as random Poisson distribution and
must be done in slot T thi .The wireless channel is constituted

of L orthogonal frequency subchannels. The achievable uplink
rate for miner i in subchannel n can be obtain as

rni =W log(1 +
pni h

n
i

WN0
), (3)

where W is the bandwidth of the uplink channel,pni is the
transmit power of miner i in subchannel n,hni is the channel
gain of miner i in subchannel n, and N0 is the noise power
spectral density. In order to concentrate more on the algorithm
design, we simplify the communication model and make an
assumption that the subchannels to be homogeneous for each
miner, then equal power is allocated to each assigned subchan-
nel. Then the uplink rate for miner i in each subchannel can
be obtain as

ri =W log(1 +
phi
WN0

) (4)

where p is the transmit power of each miner in each assigned
subchannel, hi is the channel gain of mining task i in each
subchannel. We define F as the maximal CPU-cycle frequency
of the MEC server, and define fi as the assigned CPU-cycle
frequency to compute task Ai on the MEC server. When task
Ai is executed by edge execution, the required time of Ai is

tfi = αi(
Di

Ri
+
Ci
fi

) (5)

and energy consumption of miner i is

efi = αi(P
T
i

Di

Ri
+ P Ii

Ci
fi

) (6)

where PTi i is the transmit power of miner i, P Ii is the power
consumption in idle state.

C. Problem Formulate

The objective of the paper is to minimize the total energy
consumption of solving the mining problem under speci?ed
latency constraints. The total time we need is

Ti = tli + tfi = (1− αi)
Ci
f li

+ αi(
Di

Ri
+
Ci
fi

) (7)

and we must accomplish the task in slot T thi :

Ti ≤ T thi (8)

The total energy we cost is

Ei = Eli+E
f
i = (1−αi)κ(f li )2Ci+αi(PTi

Di

Ri
+P Ii

Ci
fi

) (9)

The objective of the paper is to minimize the total energy
consumption of solving the mining problem under specified
latency constraints. To guarantee that problem (9) has an
optimal solution, we restrict TTHi ≥ Ci

f l
i

.



IV. PROBLEM SOLUTION

In this section, we introduce an accuracy-adjustable algo-
rithm, RLTBB. We propose a Reformulation-Linearization-
Technique based Branch-and-Bound method (RLTBB) with
adjustable solving accuracy to solve the energy minimization
problem. We use the ReformulationLinearization-Technique
(RLT) relaxation technique to convert the original problem
to a Mixed Boolean-convex problem.

To avoid the devide-by-zero error, we introduce two mi-
croscales, ε1 and ε2, then we has

Ti = (1− αi)
Ci
F li

+ αi[
Di

ri(ε1 + θi)
+

Ci
θ2 + fi

] (10)

Ei = (1− αi)κ(F li )2Ci + αi[P
T
i

Di

ri(ε1 + θi)
+ P Ii

Ci
θ2 + fi

]

(11)

As we can see, the problem is sensible to ε1 and ε2 for
obtaining a lower bound of problem before. Now we define
two new variables βi = (ε1 + θi)

−1 and γi = (ε2 + fi)
−1,

then the new problem can be define as

min
α,β,γ

N∑
i=1

[(1− αi)κ(F li )2Ci + αi(
PTi Di

ri
βi + P Ii Ciγi)]

s.t. C6 : ∀i ∈ N
C7 : (1− αi)Ci

f l
i

+ αi(
Di

ri
βi + Ciγi) ≤ T thi ,

C8 : 1
αiL+ε1

≤ β ≤ 1
ε1
,

C9 : 1
αiF+ε2

≤ γ ≤ 1
ε2
,

C10 :
N∑
i=1

1
βi
≤ L+Nε1,

C11 :
N∑
i=1

1
γi
≤ F +Nε2,

.

It is a nonconvex problem because of the discrete variables
and the second order terms in the form of x · y. RLT
can linearize the second order terms in the form of x · y
[13],[14].Therefore, we can get a convex relaxation problem
based on RLT and the relaxation 0 ≤ αi ≤ 1. Particularly, we
adopt the RLT to linearize the objective function and constraint
Ti in Problem before. For the second order term αi · βi, we
fefine µi = αi · βi. And for the secong order term αi · γi, we
define ωi = αi · γi.

After substituting µi and ωi into the objective, we obtain

another term of the convex optimization problem as follow,

min
α,β,γ,µ,ω

N∑
i=1

[(1− αi)κ(F li )2Ci + αi(
PTi Di

ri
µi + P Ii Ciωi)]

s.t. C6 : ∀i ∈ N
C7 : (1− αi)Ci

f l
i

+ αi(
Di

ri
µi + Ciωi) ≤ T thi ,

C8 : 1
αiL+ε1

≤ β ≤ 1
ε1
,

C9 : 1
αiF+ε2

≤ γ ≤ 1
ε2
,

C10 :
N∑
i=1

1
βi
≤ L+Nε1,

C11 :
N∑
i=1

1
γi
≤ F +Nε2,

C12 : 0 ≤ αi ≤ 1,

.

The optimal value of this problem is a lower bound of minEi
in problem(11).

We define N1 = {i | i ∈ N,αi = 1} and N0 = {i | i ∈
N,αi = 0}. Obviously, when α is determined, problem(11)
can be converted as

min
θ,f

∑
j∈N0

κ(F li )
2Ci +

∑
i∈N1

(
PTi Di

riθi
+
P Ii Ci
fi

) (12)

The optimal value of this problem is a upper bound of minEi
in problem(11). Therefore, we adopt the BB4 method based
on (15), (16), which can be solved by the state-of-the-art
convex optimization algorithms, to solve the problem (11).

In order to implement the BB method, we build a search
tree, which is generated based on the depth-?rst strategy. The
root node of the tree represents problem(11). RLTBB can
converge and its computation complexity is exponential.

V. SIMULATION RESULTS

There is an orthohexagonal region, which is covered by an
eNB located at the center, with 500m in diameter. miners are
randomly scattered over the region. There is an MEC server
located in the miners, whose computation capability is F =
5GHz/sec. The transmission power of the miner in idle state
are set to be P Ii = 10mWattsandPTi = 100mWatts. And
the computation capability of each miner is F li = 0.5GHz.
The data size8 of the computation of?oading and total number
of CPU cycles9 are Gaussian distributions, Di ∼ N(400, 100)
and Ci ∼ N(1000, 100).

The proposed algorithms are compared with three methods.
The optimal results are obtained by brute-force search. In this
case, when the offloading selection is given, we use the convex
optimal method to calculate the radio and computational
resource allocations. “All-Local” stands for that all miners
execute their applications locally. “RLTBB−ε = 0.6” stands
for the RLTBB with solving accuracy ε = 0.6. “RLTBB−ε =
0.2” stands for the RLTBB with solving accuracy ε = 0.2
and “RLTBB−ε = 0” stands for the RLTBB with solving
accuracy ε = 0.

CDFs of the energy consumption under different algo-
rithms are shown in fig.1. From the curves, RLTBB−ε =
0 can obtain the optimal result. RLTBB−ε = 0.6 and



Fig. 1. formulation.jpg

RLTBB−ε = 0.2 can not achieve the optimal result, but
their results save much energy compared with ALL-Lacal. The
energy savings of RLTBB−ε = 0.2 and RLTBB−ε = 0.6
achieve 97.97%, 94.69% of the optimal energy saving. The
result of RLTBB−ε = 0.2 is superior to the result of
RLTBB−ε = 0.6 on account of that the solving accuracy
of RLTBB−ε = 0.2 is smaller. In addition, we see that
RLTBB−ε = 0.2 and RLTBB−ε = 0.6 achieve the same
result usually. The reason is that the gap between the upper
bound and lower bound in RLTBB decreases leapingly.

VI. CONCLUSION

In this paper, we consider Mobile edge computing as an
enabler for mobile blockchain. In order to minimize the energy
consumption on miners, we jointly optimize the offloading se-
lection, radio resource allocation, and computational resource
allocation coordinately. We formulate the energy consumption
minimization problem as a mixed interger nonlinear program-
ming problem, which is subject to specific application latency
constraints. We show by simulation that the joint offloading
task execution is more energy-efficient than local execution
and remote execution for miners. In this paper, we investigated
the MEC computation offloading in a multi-users system. In
order to minimize the energy consumption on miners, we
jointly optimized the offloading selection, radio resource and
computational resource allocations. We formulated an energy
consumption minimization problem under specific application
latencies. To solve the MINLP problem, we proposed the
RLTBB method which can not only obtain the optimal re-
sult but also calculate a specific suboptimal result with the
adjustable solving accuracy. We also conducted numerous
simulations, which validate the energy saving enhancement
in our proposed RLTBB.
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