
Optimal Resource Allocation in Edge Computing
for Mobile Blockchain by Genetic Algorithm

Pihe Hu
Department of Computer Science and Engineering

Shanghai Jiao Tong University

Abstract—Blockchain is a trending technique these days. Re-
cently, more and more blockchain network has been deployed
in mobile network. In terms of bitcoin, network nodes need to
solve proof-of-work (PoW) puzzles to ensure the consensus of
the ledger. However, the computation power required for solving
PoW puzzles is not feasible for mobile devices in most cases.
In this paper, we consider deploying edge computing service
to enable the mobile blockchain. We propose optimal resource
allocation scheme to maximize the network profit. We first
formulate our profit maximization problem as a nonlinear integer
programming problem. To solve it, we propose an algorithm
inspired by genetic algorithm. Through numerical simulation,
we verify that our proposed algorithm can converges to optimal
solution very quickly with a low time complexity. Besides, we
prove that our proposed resource allocation scheme can achieve
the maximum network profit efficiently and outperform than
traditional greedy algorithm.

Index Terms—mobile blockchain, edge computing, resource
allocation, genetic algorithm.

I. INTRODUCTION

Blockchain was invented by Satoshi Nakamoto in 2008 [1]
to serve as the public transaction ledger of the cryptocurrency
bitcoin. The invention of the blockchain for bitcoin made it
the first digital currency to solve the double-spending problem
without the need of a trusted authority or central server.
Bitcoin is an electronic asset, whose reliability depends on
the hardness for mining a block by solving PoW puzzles. The
traditional blockchain network is deployed in wired Ethernet,
which provide reliable connection, as well as low delay and
high bandwidth. However, heavy equipments and fixed ac-
cess point has become shortcomings of traditional blockchain
network, which limits its further development. Besides, with
the development of wireless communication technology, the
mobile blockchain network (MBN) is more and more often.

MBN [2] is a blockchain network deployed in mobile
devices. Together they create a powerful second-level network,
a wholly different vision for how the Internet can function.
Every node is an “administrator” of the blockchain, and joins
the network voluntarily. However, each one has an incentive
for participating in the network: the chance of winning Bit-
coins. Nodes are said to be “mining” Bitcoin, but the term is
something of a misnomer. In fact, each one is competing to
win Bitcoins by solving computational puzzles. The mining
process is conducted in a tournament structure, and miners
chase each other to obtain the solution. A proof of work is
a piece of data which is difficult (costly, time-consuming) to
produce but easy for others to verify and which satisfies certain

requirements. Producing a proof of work can be a random
process with low probability so that a lot of trial and error is
required on average before a valid proof of work is generated.
Bitcoin uses the Hashcash proof of work system.

Mobile Edge Computing (MEC) [3] is a network architec-
ture concept that enables cloud computing capabilities and
an IT service environment at the edge of any network. The
basic idea behind MEC is that by running applications and
performing related processing tasks closer to the cellular cus-
tomer, network congestion is reduced and applications perform
better. MEC technology is designed to be implemented at the
cellular base stations or other edge nodes, and enables flexible
and rapid deployment of new applications and services for
customers.

Deploying MBN in MEC is a feasible way to solve the low-
computing-power dilemma. Specifically, the PoW algorithm
involves finding a nonce value that, together with additional
fields about all valid and received transactions, the previous
block and the timestamp, the output satisfies a given condition.
If the nonce is found, the miner will combine it and additional
fields into a block and then broadcast the block to peers in the
blockchain network for verification and reaching consensus.
Finally, the new block can be linked to the existing accepted
chain of blocks. However, for a mobile user, it is unrealistic
to continuously run such a computationally difficult program
which requires high computing power and consumes a large
volume of energy and time. Because the outstanding character-
istics of edge computing [4]: low latency, mobility and wide-
spread geographical distribution, we consider offloading the
mining tasks to the ESPs.

In this paper, we propose optimal resource allocation
scheme to maximize the network profit. We regard the MEC
and MBN as a heterogeneous network, which is consisted
of ESPs, MBN nodes (i.e. the bitcoin miners). The system
profit is defined as the total expected reward of all miners
minus MEC cost of computing hardwares. The network profit
maximization problem is formulated as a nonlinear integer
programming problems, which is shown in Section III. To
solve it, we propose an algorithm inspired by genetic algorithm
in Section IV. We conduct numerical simulation in Section V.
Through numerical simulation, we find our proposed algorithm
can converges to optimal solution very quickly while preserv-
ing a low time complexity. Besides, we find our proposed
resource allocation scheme can achieve the maximum system
profit efficiently and outperform than the traditional greedy



algorithm.

II. RELATED WORK

Basically, the related work of this paper is about the resource
allocation scheme in MEC-aided MBN. In [5], the authors
formulate a two-stage Stackelberg game to jointly maximize
the profit of the edge computing service provider and the
individual utilities of the miners. They apply the backward
induction to analyze the sub-game perfect equilibrium in each
stage for both uniform and discriminatory pricing schemes.
Then in [6], the authors develop an optimal auction based on
deep learning for the edge resource allocation. Specifically,
they construct a multi-layer neural network architecture based
on an analytical solution of the optimal auction. They use valu-
ations of the miners as the data training to adjust parameters of
the neural networks so as to optimize the loss function which is
the expected, negated revenue of the Edge Computing Service
Provider. Besides, in [7], the authors propose an auction-
based edge computing resource market of the edge computing
service provider, where they maximize the social welfare
while guaranteeing the truthfulness, individual rationality and
computational efficiency. In fact, our will follow a similar
system model as that in [7].

To sum up, the present schemes are mainly based on two
methodologies. The first one is pricing model based on Game
Theory. The second one is auction model based on deep
learning auction theory, which can be found in [8] and [9],
respectively. However, our work may be different from these.
We obtain the optimal solution by solving nonlinear integer
programming (NIP) problems based on a genetic algorithm. It
is worth to mention that in [15], the authors propose a method
for solving the nonlinear integer programming (NIP) problem
for the best compromise solution while holding a nonlinear
property by using the genetic algorithm. Our proposed algo-
rithm is exactly inspired by [15].

III. SYSTEM MODEL

Figure 1 shows the system model of MEC-aided MB-
N, which includes single ESP (possesses heavy equipments
offering computing power) and N mobile devices running
blockchain program. Every time, when mobile users try to
solve PoW puzzles, they send request to ESP for computing
power with specific resource demands. After receiving the
request from all users, the ESP will make a decision of
resource allocation scheme. The mobile users are exactly
miners in blockchain. In the miners network, they take part in
the mining process to contribute new blocks to the blockchain.
Trough mining, the miners are expected to received rewards,
which contributes to the network profit. The profit is exactly
total expected reward from miners minus hardware cost at the
ESP.

A. Assumptions

In this model, we assume that message transmission time
can be neglected compared to computing time. Besides, all
mobile users send request to ESP at the same time. In fact,

we only consider the resource allocation problem in one round
of resource request in this paper. Besides, we assume that the
resource allocation scheme is totally determined by the ESP,
who has the knowledge of the global network information,
with the goal to maximize the network profit. Moreover, the
resource in ESP can be uniformly quantified by numbers.

As shown in Figure 1, we consider a scenario where there is
one ESP and a community of mobile users U = {1, · · · , N}.
Each mobile user wants to be a miner, who runs a mobile
blockchain application to record and verify the transactions or
data sent to the community. Due to the computing limitation on
their devices, mobile users want to offload the task of solving
PoW to the nearby edge computing servers deployed by the
ESP. In particular, the ESP is responsible for dealing with
the request from mobile users, so as to make a decesion of
resource allocation.

At the first place, the mobile user i will send request to
ESP with resource demand di, for i = 1, · · · , N . For the
ESP, the resource demands from all mobile users is denoted
as a vector d = (d1, · · · , dN ). Besides, user i is dedicated at
mining a block of size si, for i = 1, · · · , N . After receiving
the demands, the ESP will make the decision on resource
allocation scheme. It will select the some mobile users as
the successful miners and notifies the all mobile users the
allocation scheme x = (x1, · · · , xN ), where binary variable
xi = 1 means user i’s resource demand di has been approved,
otherwise disapproved for xi = 0. After the resource allocation
scheme is informed to all mobile users throughly. The mobile
users granted to use the resource will upload their tasks to
ESP. All tasks from mobile users are run in parallel. Once a
user’s task has solved the PoW puzzle, the ESP will stop all
tasks immediately and announce the result to all mobile users.
Then a new round of resource allocation will begin.

Fig. 1. System model of MEC-aided MBN

B. MEC-aided MBN

With the allocation xi and demand di, miner is hash
power hi relative to other miners allocated resources can be
calculated by:

hi =
dαi xi∑
j∈U d

α
j xj

(1)



which is a fraction function that
∑
j∈U hi = 1. α is the curve

fitting parameter of the hash power function hi verified by
real-world experiment [10]. In the mining tournament, miners
compete to be the first to solve PoW with correct nonce value
and propagate the block to reach consensus. The generation
of new blocks follows a Poisson process with a constant rate
1/λ throughout the whole blockchain network [11]. Before
the tournament, miners collect unconfirmed transactions into
their blocks. When miner i propagates its block to the mobile
blockchain network for consensus, the time for verifying each
transaction is affected by the size of transactions si. The first
miner which successfully has its block achieve consensus can
get a reward Ri. The reward is composed of a fixed bonus
T for mining a new block and a flexible transaction fee t
determined by the size of its collected transactions s and the
transaction fee rate r [12]. Thus, miner is expected reward Ri
can be expressed by:

Ri = (T + rsi)Pi (2)

where Pi(hi, si) is the probability that miner i receives the
reward by contributing a block to the blockchain.

From the mining tournament above, winning the reward
depends on the successful mining and instant propagation. The
probability of mining a new block P si is equal to miner is hash
power hi, i.e., P si = hi. However, the miner may even lose
the tournament if its new block does not achieve consensus as
the first. This kind of mined block that cannot be added on to
the blockchain is called orphaned block [12]. Moreover, the
block containing larger size of transactions has higher chance
becoming orphaned. This is because a larger block needs more
propagation time, thus causing higher delay for consensus.
Here, we assume miner is block propagation time τi is linear
to the size of transactions in its block, i.e., τi = ξsi, where
ξ is a constant that reflects the impact of si on τi. Since the
arrival of new blocks follows a Poisson distribution, miner is
orphaning probability can be approximated as follows [13]:

P oi = 1− exp(−τi
λ
) (3)

After substituting τi, we can expressPi as follows:

Pi = P si (1− P oi ) = hi exp(−
τi
λ
) (4)

A blockchain in PoW systems is only as secure as the
amount of computing power dedicated to mining it. This
results in positive network effects: as more mobile users partic-
ipate in mining and more computing resources are invested, the
value of reward given to miners increases since the blockchain
network is more stable and secure. Empirically, we define the
network effects by a common S-shaped utility function [14]:

ρ =
1− e−νdU
1 + µe−νdU

(5)

where dU =
∑
i∈U di is the total quantity of allocated

resources and µ, ν are positive parameters. The monotonic
increase of network effect function begins slowly from 0,
then accelerates (convexly), and then eventually slows down
(concavely) and converges asymptotically to 1.

IV. PROFIT MAXIMIZATION SCHEME

In this section, we propose the optimal resource allocation
scheme for the ESP to allocate edge computing resources
efficiently. We focus on maximizing the network profit while
guaranteeing the fast convergence and low time complexity of
the proposed algorithm.

A. Problem Formulation

Once receiving resource demands from all mobile users,
ESP will make a decision on resource allocation scheme to
maximize the network profit. Just as mentioned above, the
network is the total rewards from all mobile users minus
equipment cost at the ESP. However, the network effect in
Eq. (5) should be taken in consideration. Thus, the network
profit is given by

f(x) =
∑
i∈U

wRiPi −
∑
i∈U

pdixi (6)

where p is the unit equipment cost in ESP. Furthermore, we
can formulate the network profit maximization problem P as
below:

max
x

∑
i∈U

dαi xi∑
j∈U d

α
j xj

1− e−νdU
1 + µe−νdU

(T + rsi)e
− τiλ(7)

−
∑
i∈U

pdixi

s.t. C1
∑
i∈U

dixi ≤ C

C2 xi ∈ {0, 1},∀i ∈ U

The constraint C1 defines the maximum quantity of com-
puting resources that ESP can offer denoted by C, while con-
straint C2 ensures xi is a binary variable. Generally, problem
P is a integer programing problem with linear constraint and
nonlinear objective function. Thus, P is a NIP problem, which
belongs to NP-complete problems. There is no polynomial
time algorithm to solve it. However, in the next section, we
will propose a low complexity algorithm to solve it, based on
genetic algorithm.

B. Optimal Solution by Genetic Algorithm

In computer science and operations research, a genetic
algorithm (GA) [16] is a metaheuristic inspired by the process
of natural selection that belongs to the larger class of evolu-
tionary algorithms (EA). Genetic algorithms are commonly
used to generate high-quality solutions to optimization and
search problems by relying on bio-inspired operators such as
mutation, crossover and selection.

In general, it is difficult to directly solve an optimization
problem of systems reliability formulated as a NIP model.
But we aim to solve this integer programming efficiently. In
fact, we are inspired by genetic algorithm, and follow a similar
procedure to solve problem P as that in [15]. We introduce a
method based on genetic algo- rithm for solving a NIP problem
as follows:
step 1: The parameters are setup as follows:



pop size: population size
pc: probability of crossover
pm: probability of mutation
maxgen: maximum generation
gen = 0: initial generation
maxeval = 0: value of evaluation function

step 2: We generate the initial chromosome vk(k =
1, · · · , pop size) at random with N elements.

vk = [xk1xk2 · · ·xkN ]

When generating the chromosomes, it satisfied the fol-
lowing conditions:
a) The element of each chromosome should be a binary

variable,

xki ∈ {0, 1} ∀k ∈ {1, · · · , pop size},∀i ∈ U

b) Each chromosome satisfy the constraint C1 as follows:∑
i∈U

xkidi ≤ C ∀k ∈ {1, · · · , pop size}

When we can not find a chromosome to satisfy the
conditions, there was no feasible solution and the
calculations were stopped.

step 3: We set up gen = gen + 1, calculate the evaluation
function eval(vk).

eval(vk) = f(vk), k = 1, 2, · · · , pop size.

step 4: • Crossover: Let the number of chromosome gener-
ated by crossover be ccut = 0. Create the random
number rk(k = 1, 2, · · · , pop size) from the range
[0, 1]. Select the vk that satisfy rk < pc,. Make a pair
of vk and set ccnt = ccnt + 2. Choose the position
for crossover at random and undergo crossover. Let the
chromosome that is newly generated be v′cnnt−1 and
v′cnnt.

• Mutation: Let the number of chromosome generated
by mutation be mcnt = 0. Create the random number
rk(k = 1, 2, · · · , n ∗ pop size + n ∗ ccnt) from the
range [0, 1]. Select a gene that satisfy rk < pm and
set mcnt = mcnt + 1. In a case of the mutation in
the same chromosome, it does not increase the value
of mcnt. Mutate xkj that is selected in {0, 1}. Let the
chromosome that is newly generated be v′ccnt+mcnt.

• Selection: Calculate the evaluation function
eval(v′t), t = 1, 2, · · · , ccnt + mcnt that is newly
generated. Add the penalty for the chromosome
that does not satisfy the system constraint.
Select the chromosomes among the parents
vk(k = 1, 2, · · · , pop size) and newly generated
offsprings vt(t = 1, 2, · · · , ccnt+mcnt) in the order
that is superior to others. The number to be selected
is pop size and let these chromosomes be the vk for
the next generation in which the chromosome that has
the same structure is not selected.

step 5: If maxeval < max{eval(vk)} then

v∗ = argmax
vk
{eval(vk)}

maxeval = max{eval(vk)}

step 6: If gen < genmax then goto Step 3. If gen =
genmax, then output v∗ and stop.

Theorem 1. The time complexity of proposed algorithm is
O(maxgen ∗ pop size log(pop size)

Proof: Consider the algorithm execution of one gener-
ation. Initially, the time complexity for crossover and mu-
tation is O(pop size). Second, the time complexity for s-
election is pop size log(pop size) because a sort for the
values of evaluation functions of different individuals is
needed. Then, the time complexity for one generation is
pop size log(pop size). Besides, the time complexity for
initialization is O(pop size). Thus, the total time complexity
is O(maxgen ∗ pop size log(pop size).

V. EXPERIMENT RESULTS

In this section, we conduct numerical simulation to verify
the effectiveness of our proposed algorithm, as well as the
performance of our proposed resource allocation scheme. We
will first show the convergence pross of our proposed scheme
under various crossover, mutation probabilities and population
size, then the result of the proposed resource allocation strat-
egy with a traditional greedy algorithm. Our settings for the
parameters during the experiment is shown in table I.

Parameter Value
N 50 ∼ 2000
C 25 ∼ 1250
α 1.2
µ 5
ν 0.005
T 2.5
r 0.007
λ 200 ∼ 2000
ξ 1
p 0.002
si U [0, 1000]
di 1 ∼ 11

pop size: population size
pc: probability of crossover
pm: probability of mutation

maxgen: maximum generation
gen = 0: initial generation

maxeval = 0: value of evaluation function

TABLE I
PARAMETER SETTINGS

A. Performance of the Proposed Algorithm

In general, finding the optimal solution to a NIP problem is
equivalent to conduct a search in the variable space. Genetic
algorithm provides a kind of heuristic search, which is very
likely to avoid falling into local optimum, while guaranteeing
a fast convergence speed. Thus, in the following, we will
conduct numerical experiment to verify our algorithm in terms



of convergence speed and probability of falling into local
optimum. Here, we set N = 400, C = 200 and λ = 600.

1) Convergence process under various crossover probabil-
ity: We fixed pm = 0.1, pop size = 50 and maxgen = 100.
We try to compare the convergence speed of our algorithm
under different crossover probabilities, which is shown in
Figure 2.

0 100 200 300 400 500 600 700 800 900 1000

generation

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

e
v
a
lu

ta
io

n
 f
u
n
c
ti
o
n

crossover probability 0.1

crossover probability 0.5

crossover probability 0.9

Fig. 2. Convergence process of crossover with probability 0.1, 0.5 and 0.9

It can be observed from the figure that three times of
execution of the algorithm all convergent. However, the higher
the crossover probability, the faster convergence speed of the
algorithm. Indeed, high crossover probability avoids the search
falling into local optimum.

2) Convergence process under various mutation probabili-
ty: We fixed pc = 0.1, pop size = 50 and maxgen = 100.
We try to compare the convergence speed of our algorithm
under different mutation probabilities, which is shown in
Figure 3.

0 100 200 300 400 500 600 700 800 900 1000

generation

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

e
v
a
lu

a
ti
o
n
 f
u
n
c
ti
o
n

mutation probability 0.1

mutation probability 0.5

mutation probability 0.9

Fig. 3. Convergence process of mutation with probability 0.1, 0.5 and 0.9

From the figure above, we find that though three executions
of the algorithm all convergent, convergence process under
mutation probability of 0.1 and 0.5 fall into local optimum. In
fact, we cannot conclude that convergence process under muta-
tion probability of 0.9 convergent to global optimum. However,
one thing is for sure that a higher mutation probability will
ensure the algorithm falling into local optimum at a lower

probability. Besides, in terms of convergence speed, we find
that algorithm with mutation probability 0.5 has the fastest
convergence speed, and then 0.9 and 0.1. Thus, we claim that
there exist an optimal mutation probability that has the fastest
convergence speed between 0.1 and 0.9. In other words, there
is a tradeoff between convergence speed and probability of
falling into local optimum.

3) Convergence process under various population size:
We fixed pc = 0.5, pm = 0.5 and maxgen = 1000. We
try to compare the convergence speed of our algorithm under
different population size probability, which is shown in Figure
4.

0 100 200 300 400 500 600 700 800 900 1000

generation

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.15

e
v
a
lu

a
ti
o
n
 f
u
n
c
ti
o
n

population size 20

population size 50

population size 100

Fig. 4. Convergence process of population size with 20, 50, and 100

It can be observed from the figure that three times of
execution of the algorithm all convergent. Similarly as that
in 1), our insight is that the larger population size, the faster
convergence speed and lower probability into local optimum.
In fact, the algorithm under population size of 20 has an awful
performance.

B. Simulation result of Optimal Resource Allocation

We vary the number of mobiles users N from 100 to
1000, and the averaging time λ for successfully mining a
block, from 200 to 2000. The transaction size s of each
user is uniformly distributed over [0,1000]. Here, we set
pc = 0.5, pm = 0.5, pop size = 40,maxgen = 100 and
C = N/2.

1) Impact of the number of mobile users N : Figure 5
shows the impact of the total number of mobile users N on
the network profit and the number of selected users. We fix
λ = 600. We observe that network profit and selected user
number increase at diminishing rate as the base of mobile
users becomes larger. Naturally, the ESP can select more users
as miners to increase the network profit with more available
resources. However, at the same time, the negative effects from
the competition among a larger number of miners are apparent,
which slows down the rise of the network profit as well as the
number of assigned users.

2) Impact of the average time λ for successfully mining a
block: In Figure 6, we fix N = 400. When the blockchain
owner raises the difficulty of mining a block, represented by



100 200 300 400 500 600 700 800 900 1000

Number of mobile users N

0

100

200

300

400

500

600

700

Network Profit (x500)

Number of selected users

Fig. 5. Impact of the number of mobile users on network profit and number
of selected users

λ, the network profit increases while the number of assigned
mobile users almost remains the same. Note that the users
expected reward Ri grows with increasing λ. When the diffi-
culty λ is small and each user’s reward is small, the ESP has to
accept more users to maximize the network profit. However,
if the difficulty of mining a block becomes high and each
user gets reward more, the ESP will still select enough users
to achieve the optimal network profit. Besides, one reason for
not selecting more users is the increasingly intense competition
among them. All these factor influence each together and the
selected users will almost remain the same while increasing
the network profit.

200 400 600 800 1000 1200 1400 1600 1800 2000

Average time of mining a block 

0

50

100

150

200

250

300

350

400

450

Network Profit (x200)

Number of selected users

Fig. 6. Impact of the parameter λ

3) Comparison with greedy algorithm: To further evaluate
our proposed genetic algorithm, we conduct a simulation to
compare the performance of our proposed algorithm with a
traditional greedy algorithm. In this greedy algorithm, the ESP
will always select the user with maximum single profit (i.e.
1−e−ν
1+µe−ν (T + rsi)e

− τiλ ) first. It continues in this fashion of
selection until the present resource cannot satisfies any more
users. In fact, the greedy algorithm is simple and widely used
in practice. It is worth to mention that the greedy algorithm is
supposed to find the optimal solution in some special cases,
such as symmetrical system.

We vary the number of users N from 50 to 500, such that

the network profit and selected user number of two algorithm
are shown in Figure 7. Here, the user demands are integers
uniformly distributed in [1, 11].

50 100 150 200 250 300 350 400 450 500

Number of mobile user N

0

50

100

150

200

250

300

350

Genetic Network Profit (x250)

Greedy Network Profit (x250)

Genetic User Number

Greedy User Number

Fig. 7. Comparison of genetic algorithm and greedy algorithm

The result is consistent with our expectation. We find
network profit of proposed genetic algorithm is larger than
the greedy algorithm and the difference gets larger when user
number increases. Interestingly, we find that the selected user
number of proposed genetic algorithm is no more than the
greedy user number, which means the optimal solution is not
always tends to select more user. The underlying reason is that
the more users, the fiercer competition and less probability to
succeed in mining a block.

VI. CONCLUSION

In this paper, we consider the resource allocation in MEC-
adied MBN. We propose the optimal resource allocation
scheme to maximize the network profit. We first formulate
our profit maximization problem as a nonlinear integer pro-
gramming problems. To solve it, we propose an algorithm
inspired by genetic algorithm. Through numerical simulation,
we find that our proposed algorithm can converges to optimal
solution very quickly while preserving a low time complexity.
Besides, our proposed resource allocation scheme can achieve
the maximum network profit efficiently.

ACKNOWLEDGMENT

Initially, please allow me to express my sincere thanks to
teacher Fu. Luoyi, for her help during the course project, as
well as her kindness and understanding for postponing my
deadline of course project due to my personal reason. Thank
you, again.

Besides, I need to say thank you to the authors in [7], on
whose work my system model is based. Moreover, thank you
to authors in [15] as well, whose work inspired me a lot in
solving the NIP problems.

REFERENCES

[1] Crosby, Michael, et al. ”Blockchain technology: Beyond bitcoin.” Ap-
plied Innovation 2 (2016): 6-10.

[2] Suankaewmanee, Kongrath, et al. ”Performance analysis and application
of mobile blockchain.” arXiv preprint arXiv:1712.03659 (2017).



[3] Flinck, Hannu. ”Mobile Edge Computing.” (2016).
[4] Yi, Shanhe, Cheng Li, and Qun Li. ”A survey of fog computing:

concepts, applications and issues.” Proceedings of the 2015 Workshop
on Mobile Big Data. ACM, 2015.

[5] Xiong, Zehui, et al. ”Edge computing resource management and pricing
for mobile blockchain.” arXiv preprint arXiv:1710.01567 (2017).

[6] Luong, Nguyen Cong, et al. ”Optimal auction for edge computing
resource management in mobile blockchain networks: A deep learning
approach.” arXiv preprint arXiv:1711.02844 (2017).

[7] Jiao, Yutao, et al. ”Social Welfare Maximization Auction in Edge
Computing Resource Allocation for Mobile Blockchain.” arXiv preprint
arXiv:1710.10595 (2017).

[8] Han, Zhu, et al. Game theory in wireless and communication networks:
theory, models, and applications. Cambridge university press, 2012.

[9] Dtting, Paul, et al. ”Optimal auctions through deep learning.” arXiv
preprint arXiv:1706.03459 (2017).

[10] Suankaewmanee, Kongrath, et al. ”Performance analysis and application
of mobile blockchain.” arXiv preprint arXiv:1712.03659 (2017).

[11] Kraft, Daniel. ”Difficulty control for blockchain-based consensus sys-
tems.” Peer-to-Peer Networking and Applications 9.2 (2016): 397-413.

[12] Houy, Nicolas. ”The Bitcoin mining game.” (2014).
[13] Rizun, Peter R. ”A transaction fee market exists without a block size

limit.” Block Size Limit Debate Working Paper (2015).
[14] Jackson, Matthew O. Social and economic networks. Princeton univer-

sity press, 2010.
[15] Yokota, Takao, and Mitsuo Gen. ”Solving for nonlinear integer program-

ming problem using genetic algorithm and its application.” Systems,
Man, and Cybernetics, 1994. Humans, Information and Technology.,
1994 IEEE International Conference on. Vol. 2. IEEE, 1994.

[16] Whitley, Darrell. ”A genetic algorithm tutorial.” Statistics and computing
4.2 (1994): 65-85.


