
Influence Maximization in Social Network
515030910594

Xiuwen Qin

Abstract—Influence maximization is a pop problem nowadays.
Against the limited influence scope and high time complexity of
existing influence maximization algorithms in social networks,
a k-core filtered algorithm was introduced, its rank of nodes
does not depend on the entire network. Secondly, pre-training
was carried out to find the value of k which has the best
optimization effect on existing algorithm but has no relation
with the number of selected seeds. Finally, the nodes and edges
that do not belong to the k-core subgraph were filtered by
computing the k-core of the graph, then the existing influence
maximization algorithms were applied on the k-core subgraph,
thus reducing computational complexity. What’s more, a new
influence maximization algorithm named GI was proposed. It
has more influence area and low time complexity.

Keywords—social network, influence maximization, k-core, GI.

I. INTRODUCTION

Influence maximization problem is to find t initial nodes
and make the information can spread the largest area. Kempe
define it a discrete optimization problem and prove that the
influence maximization problem is NP-hard under independent
cascade model. There has two typical spread model: Indepen-
dent Cascade model and Linear Threshhold model. On the
basic of these two models, people propose several algorithms,
such as CELF, CCA, PMIA, IRIE and so on.

However, these algorithms still have a gap compared with
the optimal solution. To improve existing algorithms, I propose
a algorithm based on the k-core. It can apply in existing
algorithms and enlarge the influence area and lower the time
complexity. What,s more, I find a new improved algorithm GI
which can influence more area and execute less time.

II. EXPERIMENT

A. Problem Definition

• Definition 1: un: In directed graph G=(V,E), given an
input t. The influence maximization problem is to find a
node subset S′ ∈ V , the influence area σ(S′) satisfy:

σ(S′) = max{σ(S)||S| = t, S ⊆ V }

s.t.|S′| = t

• Definition 2: un: A aggregate function f: 2V → R is
monotonous, if f(S) ≤ f(T) satisfy for all S ⊆ T .

• Definition 3: un: A aggregate function f: 2V → R is
submodel, if f(S ∪ |u|) − f(S) ≥ f(T ∪ |u|) − f(T)
satisfy for all S ⊆ T ⊆ V ⊆ and u ∈ V .

B. k-core

Any node v in the set Vk ⊆ V has a degree which is not less
than k. The maximum induced subgraph Gk(Vk, Ek) which is
inferred by Vk is called k-kernel.

Since the nodes which has large degree may be scattered, the
k-core can gather these large degree nodes and then produce
large network influence.

C. k-core filter algorithm

K-core filter algorithm is not a independent influence max-
imization algorithm. It combines with existing algorithm to
enlarge the influence area and shorten the execution time. The
basic thought is to pre-train k and find a constant k value
which has best optimizing result. When given the node counts
t, we can calculate the k-core of the graph and filtrate the
unnecessary edges and nodes. Then we apply the influence
maximization algorithm on the k-core subgraph and achieve
the target that shorten the execution time.

K-core filter algorithm has two procedures:1)pre-train the
value k which can produce the best optimizing result. 2)cal-
culate the k-core of the network and apply into existing
algorithms.

Fig. 1. pre-train k

Fig. 2. k-core optimize existing algorithm

The pre-training procedure can find the best k. We can
learn that when we choose different node counts t, we can
get a constant k value which leads to a best optimizing value.

Then we use the seed nodes set S which is calculated by the
second algorithm. The execution time will decrease a lot and
can influence more area.

D. k-core optimizing existing algorithms

Among the existing influence maximization algorithm,
PMIA and IRIE algorithm have better results. IRIE costs
large memory and IRIE need to execute a long time. Here,
we combine k-core filter algorithm with CCA and PMIA and
get KCoreCCA and KCorePMIA. The new algorithms can
spread farther and finished quickly.

1) KCoreCCA:
CCA algorithm is based on the the spread distance to choose

t nodes which has biggest cores as seed nodes. Core k shows
that the node belongs to k-core but not (k+1)-core. Pruning
low-degree nodes will not influence the spread area but will
shorten the execution time a lot.

Fig. 3. KCoreCCA

Cv is the node cores, COv is the node cover property,
du,v is the distance between node u and v. This algorithm
is to apply k-core filter algorithm into CCA. The time
complexity of CCA is O(tm). Because of pruning many
nodes and decrease calculated amount, the time complexity
of KCoreCCA is max{O(m), O(tmk)}.

2) KCorePMIA:
PMIA algorithm firstly calculate the local tree structure

PMIIA and PMIOA of each node ∀v ∈ V . Based on
the local tree structure PMIIA to calculate the influence
ap(u, S, PMIIA(v, θ)) caused by each node u. Then calcu-
late the influence coefficient α(v, u) based on the influence
linearity property and choose t nodes which have maximum
influence. PMIA algorithm need to calculate the local tree
structure of each node and it costs much memory. We use
k-core filter algorithm to find the maximum influence nodes
and then only need to calculate the local tree structure of these
nodes. This can decrease much calculated amount.

The time complexity of PMIA algorithm is O(ntiθ +
tnoθniθlogn). niθ is the PMIIA local tree structure of all
nodes. noθ is the PMIOA local tree structure of all nodes. tiθ

Fig. 4. KCorePMIA

is the longest time that calculate the PMIIA local tree structure
of all nodes. Because of the calculation of all nodes’ PMIIA
and PMIOA tree structure, the time complexity of PMIA must
be larger than O(m). However, the KCorePMIA only need to
calculate the local tree structure on the k-core subgraph. Its
time complexity is max{O(m), O(nktiθk+tnoθkniθklognk)}

E. GI algorithm

The GI algorithm extends the algorithm model based on
tree. It decrease the time complexity and ensure the influence
area.

The path Pu,v = (n1 = u, n2, ..., nm = v) is a path from
node u to node v Under the independent cascade model, the
probability of the node u activation node v by the path P is:

pp(Pu,v =

m−1∏
i=1

p(ni, ni+1)

Node u can influence node v by many paths, we use the
maximum influence path MPP(u,v) to stand for the probability
of u influence v:

pp(u, v) = pp(MPP (u, v)) = pp(argmax(pp(Pu,v)))

By calculate the influence probability of each node to node
u, we can make a reverse propagation tree ITree(u). In a similar
way, we can calculate the influence probability of node u to
each other node. Then we can make maximum propagation
tree Otree(u).

When add a node active node u in the seed node set S, the
influence gain of v from seed node set gain(u,—S,v) is:

gain(u, |S, v) = pp(u, v)(1− pp(S, v))

Suppose every node influence other nodes independently.
Then the total influence gain after adding a new active node

u into seed node set S gain(u—S) is:

gain(u|S) =
∑
v∈V

pp(u, v)(1− pp(S, v)

Based on the submodel property of influence maximization,
we can choose the node which has maximum gain(u—S) into
the seed node set S until we choose t nodes.

Fig. 5. GI

The time complexity of GI algorithm is O(ntθ +
t(tθ + logn)). If we apply k-core filter algorithm on it
and get KCoreGI algorithm. Then the time complexity is
max{O(m), O(nktθ + t(tθ + lognk))}

III. EXPERIMENTAL EVALUATION

By analyzing the above algorithm, we can get the time
complexity of every algorithm and k-core filter algorithm. We
can find that the complexity decrease obviously.

Fig. 6. Time complexity comparison of different IM algorithms and their
k-core filtered versions

IV. CONCLUSION

Concerned on the influence maximization problem in social
network, we propose a new GI algorithm. It can influence
larger area and have less execution time. What’s more, by k-
core calculating the nodes which have small influence area
and pruning them, we get a k-core filter algorithm which can
enlarge the influence area of existing algorithms and shorten
the time. However, because of lack of time and data, I don’t
continue the next experience. In the future, I will find some
proper data set and execute the k-core filter algorithm to get the
exact data. By the data, we can compare the different algorithm
more intuitively.

V. REFERENCES

[1] aaai Burst Time Prediction in Cascades
[2] aaai Distinguishing between Topical and Non-topical

Information Diffusion
[3] aaai Extracting Influential Nodes for Information Diffu-

sion on a Social Network
[4] aaai Learning User-specific Latent Influence and
[5] ijcai15 Maximizing the Coverage of Information Prop-

agation in Social Networks
[6] Information Diffusion in Computer Science Citation

Networks
[7] Uncover Topic-Sensitive Information Diffusion Net-

works

	Introduction
	Experiment
	Problem Definition
	k-core
	k-core filter algorithm
	k-core optimizing existing algorithms
	KCoreCCA
	KCorePMIA

	GI algorithm

	Experimental Evaluation
	Conclusion
	References

