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Abstract—Deep learning networks have the ability to identify
complex and subtle patterns from very large datasets. Ususally,
the data are obtained by crowdsourcing technique and collecting
users’ data containing sensitive information. So the privacy must
be taken into consideration in the deep learning models. Here, I
consider the scenario where the data is distributed among mul-
tiple participants. Combining the deep learning techniques with
the privacy-preserving mechanism, I study the stochastic gradient
decent algorithm with differential privacy on the DistBelief model
and analyze its performance.

Index Terms—deep learning, privacy preserving, differential
privacy

I. INTRODUCTION

Machine learning equipped the computer with the ability to
find patterns in data. New technique called deep learning is
achieving remarkable results in many fields, like image clas-
sification, natural language processing and speech recognition
[1]–[3].

Deeper networks and larger datasets can both dramatically
improve the accuracy of the model. It is easy to understand
since machine learning only take part of the whole data as
the training set. So increasing the scale of deep learning, ex-
panding training dataset and adding model parameters all can
improve the performance. However, for a single participant,
the computational capability is limited even he use a group
of GPUs. The size of data or parameters is not enough for
problems which needs lots of examples.

Let’s consider a simple two-party scenario, which can help
find the solution to the distributed deep network among many
parties: two hospitals both want to learn the relationship
between the lung cancer and the CT images. They have to
share the data and the deep network because each hospital
can’t get good results by its own. However, the data must
be kept secret from the other hospital, since the privacy of
patients need to be protected. And the hospitals are both very
mean. They don’t want to reveal any extra information except
the training model.

So how to solve it? I will introduce the concept of differ-
ential privacy first. Differential privacy will provide privacy
by introduing randomness into the raw data. The randomness
will not decrease the model accuracy. Instead, it can greatly
increase the robustness of the model [4]. It’s promising to
combine differential privacy and deep network together.

In this paper, I describe a two-party distributed deep network
scheme with differential privacy based on Google’s deep
neural network architecture DistBelief [4]. I show the model
parallelism can be achieved as well as the robustness and
privacy preservation. I will firstly introduce the basic concept
of deep learning and differential privacy in Section II and
describe the model in Section IV. Finally I discuss the future
improvement of the model.

II. PRELIMINARIES

In this sections, I briefly review deep learning and introduce
basic concepts of differential privacy.

A. Deep learning

Deep learning is based on deep neural networks, which
have remarkable effect on many machine learning applications.
It take the mapping function from inputs to outputs as a
combination of many layers of basic building blocks. Taking
keras for example, the network layers includes dense layer,
activation layer, dropout layer and more. Often, the most
commonly used blocks are affine transformation, which trans-
forms the coordinates of data and simple nonlinear function,
which introduces the nonlinear factor into the model. By
choosing appropriate kinds and orders of those blocks, I can
form a network and train the mapping function to obtain the
parameters which can fit any given finite size of examples.

To evaluate the parameters during training, I defince a loss
function representing the penalty for the difference between
the estimated result and the true output. The aim of training
is to reduce the value of loss function to an acceptably small
one and get close enough to the global minimum.

Complex networks usually have non-convex loss function,
which is difficult to minimize. Previous studies proposed a
minimization method called stochastic gradient descent (SGD)
algorithm. In SGD algorithm, one run the loops where he
forms a batch B of random examples and computes an
estimation value gB = 1

|B|
∑
x∈B ∆θL(θ,x) where L(θ,x) is the

loss function and
theta is updated in the gradient direction −gB which points
to the local minimum.

There are several frameworks of deep learning, such as
Tensorflow [5], SparkNet [6], and Keras [7]. Here I choose
the classical model DistBelief [4] as the basis because [4]



designed a method called Downpour SGD which satisfy our
assumption: the datas and models are distributed with a shared
parameter server, and the SGD algorithm can be run on the
parameter server.

B. Differential Privacy

Differential privacy is a strong standard for preserving
privacy of large databases in algorithm. It is defined in terms
of the application-specific concept of adjacent databases.

Before I talk about differential privacy, some definitons
about probability need to be introduced first:

Definition 1 (Probability Simplex). Given a discrete set B,
the probability simplex over B, denoted 4(B) is defined to
be:

4(B) = {x ∈ R|B| : xi ≤ 0 for all i and

|B|∑
i=1

xi = 1}

III. MODEL

Definition 2 (Randomized Algorithm). A randomized algo-
rithm M with domain A and discrete range B is associated
with a mapping M : A → ∆(B). On input a ∈ A, the
algorithm M outputs M(a) = b with probability (M(a))b
for each b ∈ B. The probability space is over the coin flips of
the algorithm M.

Definition 3 (Distance Between Database) Suppose I have
databases x ∈ N|X | which are collections of records from the
whole space X . The l1 norm of x is denoted ||x||1 and has
the following form:

||x||1 =

|X |∑
i=1

|xi|

The l1 distance between two databases x and y is ||x−y||1.
The definition of differential privacy is like following:
Definition 4 (Differential Privacy) A randomized algorithm

M with domain N|X | is (ε,δ)-differentially private if for all
S ⊆ Range(M) and for all x,y ∈ N|X | such that the l1
distance between x and y satisfies ||x− y||1 ≤ 1:

Pr[M(x) ∈ S] ≤ eεPr[M(y) ∈ S] + δ

When δ = 0, M is ε-differentially private.

IV. MODEL

This section describes our model under the two-party sce-
nario. I combine the differentially private stochastic gradient
descent (SGD) algorithm with the Downpour SGD in DistBe-
lief together.

A. Assumption

Fig. 1 shows our model structure. The model consists of
two parties (called Alice and Bob in the next section of paper)
and a parameter server. Each pary own a model replica and a
database. The deep network model are known to both parties
and they have a same copy of it, while the database are
different. I can take the combination of the datasets as a whole
virtual database. Then the data is horizontally partitioned. Each

object in the virtual database is either completely owned by
Alice or completely owned by Bob. And the model are trained
on Alice and Bob’s joint dataset.

Fig. 1. The model of two-party distributed deep network schemes. Each party
own a model replica and a database. They share a parameter server.

B. Differentially Private SGD Algorithm on distributed deep
network

Stochastic gradient descent (SGD) is the most commonly
used optimization procedure for minimizing the complex loss
function. [4] proposed Downpour SGD, a variant of asyn-
chronous stochastic gradient descent that uses many replicas
of a single model. Downpour SGD divide a training data into
a number of subsets and run a copy of the model on each
of these subsets. Similar to the algorithm, I have a divided
virtual dataset and a shared model. So I can train the network
asynchronously with two remote party and a parameter server.

The algorithm is shown in Table I:
The differential privacy has been proved in [8]. Here I

give a simple explaination. Taking approciate value of σ
in algorithm,the algorithm can be (ε,δ)-differentially private.
Since the two party train the model independently, each θ they
get is a little outdated. Meanwhile, if the parameter server runs
well, even one party fails during the training, the other parties
can still get a trraining result. These both increases the model’s
robustness.

V. IMPROVEMENT

A main problem in the previous model is that the parameter
server needs to be trustful and the communication between the
parties and the model must be secure. Improvement can be
made if I remove the parameter server from the model but let
the two party store the parameters instead. Then it becomes a
total multi-party computation problem. A new model without
the parameter server is shown in Fig. 2.

I need to introduce the concept of homomorphic encryption
and random shares into the model. Homomorphiic encryption
is a form of encryption that allows computation on ciphertexts
and by decrypt the real result from the ”encrypted” result.



TABLE I
DIFFERENTIALLY PRIVATE SGD ALGORITHM ON DISTRIBUTED DEEP

NETWORK

PARTICIPANTS Alice, Bob, and parameter server.
INPUT Examples {xa1 ,xa2 ,...,xan} owned by Alice and {xb1 ,xb2 ,...,xbm}

owned by Bob, loss function L(θ) = 1
N

∑
i L(θ,xi).

PARAMETERS learning rate ηt, noise scale σ, group size L, gradient
norm bound C.

STEPS
The parameter server Initialize θ0 randomly
Each party A/B does:
for t ∈ [T ] do

Take a random sample Lt with sampling probability L/N
Each party asks the current version of θ from the parameter server.
it’s denoted as θt.
Compute gradient
For each i ∈ Lt, compute gt(xA/Bi )← ∆θiL(θt,xA/Bi )
Clip gradient

ḡt(xA/Bi )←
gt(xA/Bi

)

max(1,
||gt(xA/Bi

)||2
C

Add noise
g̃t ← 1

L

∑
i(ḡt(xA/Bi ) +N (0,σ2C2I)

Descent
submit ∆ = ηtg̃t to the server

The server updates the θ each time it receives a submission:
θ′ = θ −∆.

OUTPUT θT stored in the server and compute the overall privacy
cost (ε,δ) using a privacy accounting method.

Fig. 2. The model of two-party distributed deep network schemes. Each party
own a model replica and shares the parameters withous any third party.

Random shares means the values are shared as uniformly
distributed random values between the two parties. The sum of
the values owned by the parties is the actual value. [9] More
formally, I have the following definition:

Definition 5 (Random Shares) Alice and Bob have random
shares of a value x drawn from a field F of size N . The
abbreviation is that Alice and Bob have random shares of x.
That means Alice knows a value a ∈ F and Bob knows a
value b ∈ F such that

(a+ b) mod N = x

where a and b are uniformly random in field F .
In this model, Alice and Bob have random shares of θ.

Firstly they use homomorphic encrypton to own a random

share of θ0 securely. Suppose Alice owns θa and Bob owns
θb. When one party like Alice wants to use θ, she will ask
Bob to get a outdated θ̃b. Then she computes θ̃ = θa + θ̃b and
generates a new θa randomly. She then sends θ̃ − θa to Bob
and tells Bob to replace θb with it. When Bob wants to use θ,
he does the same steps.

The new algorithm is shown in Table II:

TABLE II
DIFFERENTIALLY PRIVATE SGD ALGORITHM ON DISTRIBUTED DEEP

NETWORK WITHOUT SERVER

PARTICIPANTS Alice, Bob.
INPUT Examples {xa1 ,xa2 ,...,xan} owned by Alice and {xb1 ,xb2 ,...,xbm}

owned by Bob, loss function L(θ) = 1
N

∑
i L(θ,xi).

PARAMETERS learning rate ηt, noise scale σ, group size L, gradient
norm bound C.

STEPS
The two parties Initialize θ0 randomly and establish a random shares of θ0

by homomorphic encryption.
Each party A/B does:
for t ∈ [T ] do

Take a random sample Lt with sampling probability L/N
Each party asks the other to calculate θ.
the parameter is denoted as θt.
Compute gradient
For each i ∈ Lt, compute gt(xA/Bi )← ∆θiL(θt,xA/Bi )
Clip gradient

ḡt(xA/Bi )←
gt(xA/Bi

)

max(1,
||gt(xA/Bi

)||2
C

Add noise
g̃t ← 1

L

∑
i(ḡt(xA/Bi ) +N (0,σ2C2I)

Descent
Calculate θ′ = θt − ηtg̃t
Randomly choose a value θ′

A/B
. Send θ′ − θ′

A/B
to the other party. The

parties updates the θA/B each time when they receive a new value from
the other:

OUTPUT θT = θAT + θBT and compute the overall privacy
cost (ε,δ) using a privacy accounting method.

The parameter exchanging process ensures that the com-
munication complexity is almost the same as the previous
model with a parameter server. But the model tights up
the constraints: it require both parties work well during the
training, since if one fails, the true value of θ is lost. And the
robustness is only kept by the randomness introduced to hold
differential privacy.

VI. DISCUSSION

If there are three or more parties, the requirements can
be relaxed: each party can store k(k ≥ 2) values about θ,
if one party fails, the remaining parties can still obtain an
approximate θ. However, the communication scheme will be
more complex. The orders of sending random values and the
randomness of the subgroups which can obtain an approximate
θ must be taken into consideration.

Here I only discuss the horizontally partitioned data. Actu-
ally, there can be cases that the data is vertically partitioned
that each attribute is completely stored by one party. Arbitrary
partitioned data is also possible [10]. In such cases, not only
the parameters needs to be randomly shared, but also the
datasets because one party can’t get well trained result when
the atrributes is not complete.
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