
Course Report for
Detecting Rumors from Microblogs with Recurrent Neural Networks

Tonghui Tang
School of Electronic Information

and Electrical Engineering
Shanghai Jiao Tong University
Student Number: 515030910611

Email:supermantth@163.com

Abstract—Microblogging platforms are an ideal place for
spreading rumors and automatically debunking rumors is a
crucial problem. To detect rumors, existing approaches have
relied on hand-crafted features for employing machine learning
algorithms that require daunting manual effort. Upon facing
a dubious claim, people dispute its truthfulness by posting
various cues over time, which generates long-distance depen-
dencies of evidence. Then in the reference paper [1], it presents
a method that learns continuous representations of microblog
events for identifying rumors which based on recurrent neural
networks (RNN) for learning the hidden representations that
capture the variation of contextual information of relevant
posts over time. In this report , we implement a RNN model
based on the reference paper and try to do some modification
to achieve best results.

1. Introduction1

1.1. Rumor

Social psychology literature defines a rumor as a story
or a statement whose truth value is unverified or deliberately
false [2]. False rumors are damaging as they cause public
panic and social unrest. For example, on August 25th of
2015, a rumor about shootouts and kidnappings by drug
gangs happening near schools in Veracruz spread through
Twitter and Facebook1. This caused severe chaos in the city
involving 26 car crashes, because people left their cars in
the middle of a street and rushed to pick up their children
from school. This incident of a false rumor highlights that
automatically predicting the veracity of informa tion on
social media is of high practical value.

Debunking rumors at an early stage of diffusion is
particularly crucial to minimizing their harmful effects. To
distinguish rumors from factual events, individuals and orga-
nizations often have relied on common sense and investiga-
tive journalism. Rumor reporting websites like snopes.com
and factcheck.org are such collaborative efforts. However,

1. This part is mainly from [1]

because manual verification steps are involved in such ef-
forts, these websites are not comprehensive in their topical
cover- age and also can have long debunking delay.

1.2. Models using Learning Algorithms

Existing rumor detection models use learning algorithms
that incorporate a wide variety of features manually crafted
from the content, user characteristics, and diffusion patterns
of the posts [3] [4] [5] [6] [7] [8], or simply exploited
patterns expressed using regular expressions to discover
rumors in tweets [9]. Feature engineering is critical, but it
is painstakingly detailed, biased, and labor-intensive.

1.3. Deep Neural Networks

In several years, deep neural networks have demon-
strated clear advantages for many machine learning prob-
lems [10] [11] [3]. given the sequential nature of text
streams in social media, recurrent neural networks (RNN)
are suitable for rumor detection. For the connections be-
tween units in an RNN form a direct cycle and create an
internal state of the network [12] that might allow it to
capture the dynamic temporal signals characteristic of rumor
diffusion.So given the sequential nature of text streams in
social media, recurrent neural networks (RNN) are suitable
for rumor detection.

1.4. Method in Reference Paper

In the reference paper [1], utilizing RNN, they model
the social context information of an event as a variable-
length time series. They assume people, when exposed to a
rumor claim, will forward the claim or comment on it, thus
creating a continuous stream of posts. This approach learns
both the temporal and textual representations from rumor
posts under supervision.

The network model of their model is as shown in
Figure1. For each model, there is a embedding layer that
encode the origin representation of words into vector to
convert the sparse input word vectors into low-dimensional
representations.

Figure 1. RNN-based rumor detection models in the reference paper

Then there are CNN, LSTM or GRU layers. After go
through these layers, there is a full connected layer that
output the result.

However, in this paper, author didt point out clearly the
which is the input. the input is one word or a sentence, If
it is one word, then the time step will be the longest length
of top k. If it is a sentence, then the time step will be the
interval.

so while firstly implementing the paper, I use my own
approaches to handle the data.

2. Related Work2

Automatic rumor detection from social media is based
on traditional classifiers that detect misinformation stem-
ming from the pioneering study of information credibility
on Twitter [3]. In following works [4] [6] [7] [8], different
sets of hand-crafted features were proposed and incorporated
to determine whether a claim about an event is credible.
Most of these prior works attempted to classify the veracity
of spreading memes using information other than the text
content, for instance, the popularity of a post (e.g., the
number of retweets or replies of the post), the features rel-
evant to determine a users credibility, etc. However, feature
engineering is painstakingly labor intensive.

Some prior studies focused on capturing the temporal
traits of rumors during their propagation. [5] introduced a
time-series-fitting model based on the temporal properties
of a single feature tweet volume. [7] extended the model
using dynamic time series to capture the variation of a set
of social context features over time. [13] characterized the
structure of misinformation cascades on Facebook by ana-
lyzing comments with links to rumor debunking websites.
[9] worked on early rumor detection using cue terms such
as not true, unconfirmed or debunk to find questioning and
denying tweets.

[1] use the temporal properties of the representations,
but the features are learned automatically via an RNN given
the fundamental term representation in each time segment.

2. This part is mainly from [1]

Also, it learns representations that are significantly more
complex than these explicit signals; these representations
can capture the hidden implications and dependencies over
time. And it is related to studies detecting spammers [14]
[15] and fake images on Twitter [16], and the Truthy system
[17] [18] that differentiates whether a meme is spreading
organically or is being spread by an astroturf campaign.

3. RNN: Recurrent Neural Network3

An RNN is a type of feed-forward neural network that
can be used to model variable-length sequential information
such as sentences or time series. A basic RNN is formalized
as follows: given an input sequence (x1,, xT), for each
time step, the model updates the hidden states(h1,, hT)
and generates the output vector (o1,, oT), where T
depends on the length of the input. From t = 1 to T , the
algorithm iterates over the following equations:

ht = tanh(Uxt +Wht−1 + b)

ot = V ht + c

where U , W and V are the input-to-hidden, hidden-to-
hidden and hidden-to-output weight matrices, respectively
b and c are the bias vectors, and tanh(.) is a hyperbolic
tangent nonlinearity function.

Typically, the gradients of RNNs are computed via back-
propagation through time [19]. In practice, because of the
vanishing or exploding gradients [20], the basic RNN cannot
learn long-distance temporal dependencies with gradient-
based optimization. One way to deal with this is to make an
extension that includes memory units to store information
over long time periods, commonly known as Long Short-
Term Memory (LSTM) unit [21] [22] and Gated Recurrent
unit (GRU) [3] . Here, we briefly introduce the two struc-
tures.

3. This part is mainly from [1]

3.1. Long Short-Term Memory (LSTM)

Unlike the traditional recurrent unit whose state is over-
written at each time step (equations 1), an LSTM unit
maintains a memory cell ct at time t. The output ht of an
LSTM unit is computed by the following equations [22] [21]

it = σ(xtWi + ht−1Ui + ct−1Vi)

ft = σ(xtWf + ht−1Uf + ct−1Vf)

c̃t = tanh(xtWc + ht−1Uc)

ct = ft + ct−1 + itc̃t

ot = σ(xtWo + ht−1Uo + ctVo)

ht = ottanh(ct)

where σ is a logistic sigmoid function. The input gate it
determines the degree to which the new memory is added
to the memory cell. The forget gate ft decides the extent
to which the existing memory is forgotten. The memory ct
is updated by forgetting part of the existing memory and
adding new memory c̃t.The output gate ot is the amount of
output memory.

3.2. Gated Recurrent Unit (GRU)

Similar to an LSTM unit, a GRU has gating units that
modulate the flow of the content inside the unit, but a GRU
is simpler with fewer parameters. The following equations
are used for a GRU layer [3]:

zt = σ(xtUz + ht−1Wz)

rt = σ(xtUr + ht−1Wr)

h̃t = tanh(xtHh + ht−1rtWh)

ht = (1− zt)ht−1 + zth̃t

where a reset gate rt determines how to combine the
new input with the previous memory, and an update gate zt
defines how much of the previous memory is cascaded into
the current time step, and h̃t denotes the candidate activation
of the hidden state ht.

4. RNN-based Rumor Detection

Compared to the reference paper, we use the basic split
method corresponding to each event.In problem state and the
algorithm spliting the Event, it is almost the same between
my method and reference paper. Next , I will introduce
my implementation work following the approach in the
reference paper.

4.1. Problem Statement

Individual microblog posts are short in nature, contain-
ing very limited context. A claim is generally associated
with a number of posts that are relevant to the claim. We
are not interested at the individual level, but at the aggregate
level. Therefore, predicting the veracity of each post is not
our focus here. Instead, we concentrate on detecting rumors
at the event-level, comprised of a set of relevant posts. We
define a set of given events as E = {Ei}, where each event
Ei = {(mi,j , ti,j)} consists of ideally all relevant posts mi,j

at timestamp ti,j , and the task is to classify each event as
a rumor or not.

4.2. Variable-length Time Series

We could model each post as an input instance and
construct an RNN modeling the time series with a sequence
length equal to the number of posts. However, there could
be tens of thousands of posts in a popular event. We have
only a single output unit indicating the class at the last
time step of each event. Back propagation through a large
number of time steps with only a final-stage loss will be
computationally expensive as well as ineffective. Hence, we
batch posts into time intervals and treat them as a single
unit in a time series that is then modeled using an RNN
sequence. A reference length of RNN sequence is adopted
for constructing the time series.

Time spans representing densely populated with posts
in the diffusion should be captured properly; the number
of time intervals adopted approximates the reference length
of RNN. Algorithm 1 describes the procedure. Initially, we
divide the entire timeline equally into N intervals (i.e., N
is the reference length). Then, our system tries to discover
the set of non-empty intervals U0 (i.e., each interval in U
0 has at least one tweet) by removing the empty ones in
the set U0, from which those continuous intervals whose
overall time span is the longest are chosen into the set Û .
If the number of intervals in Û is lower than N and the
number of intervals is more than that of the previous round,
we halve the intervals and continue partitioning; otherwise,
it returns the discovered continuous intervals given by Û .
Note that the length of entire time series, though is close
to N , varies among different events, whereas the length of
individual intervals in an event is equal.

4.3. Word to Vector

After we divide the posts in each event into several
intervals. We should think about how to represent the data
in each interval.

Firstly, we use tfidf algorithm to select top-K words
in each interval. Then we use a vector to represent each
word using the vector set download from the website4 in
which we choose the Weibo vector set corresponding to our
dataset.

4. https://github.com/Embedding/Chinese-Word-Vectors

In this vector set, each word is represented by a vector
x which has the length of 300, thus for each interval, we
concat all the represent of words together.

Therefore, for each interval, we could get the represen-
tation i = [x1, ..., xK] which has the length of 300K.

4.4. Structures of Models

4.4.1. Basic model. Based on the model illustrated in Fig-
ure1, we implement these models almost the same with the
reference. However, there are still a little modification.

Before entering into the RNN layer, we use a mask layer
to set the length to be the same value.

Instead of using squared error, we use logloss error to
evaluate the model. Let gc, where c denotes the class label,
be the ground-truth class an event. For each training instance
(i.e., each event), our goal is to minimize the logloss error
between the probability of each event of the prediction and
ground truth:

min
∑
c

gc log pc+ (1− gc) log(1− pc) +
∑
i

||θi||2

where gc and pc are the gold and predicted distributions,
respectively, θi represents the model parameters to be esti-
mated, and the L2-regularization penalty is used for trading
off the error and the scale of the problem

4.4.2. Model with CNN. Long-distance dependencies are
important for capturing the patterns in rumors and hidden

Figure 2. RNN with CNN

signals over the life cycle of the event. Actually, we also
try to use CNN to find some local feature during each
inteveral.the model is shown in Figure3

4.5. Model Training

We train all the models by employing the derivative of
the loss through backpropagation [23] with respect to all
of the parameters. We use the AdaGrad algorithm [24] for
parameter update. We empirically set the vocabulary size K
as 10, the size of the hidden units as 125 and the learning
rate as 0.01. We iterate over all the training events in each
epoch and continue until the loss value con- verges or the
maximum epoch number is met.

5. Experiments and Results

5.1. Data Collection

We use the datasets released by the reference paper about
sina Weibo. In this dataset,There are about 4500 event. And
the positive instance and negative instance are almost the
same.

5.2. Experimental Results

For the three RNN-based models, for GRU and LSTM
remember more long-term information. GRU and LSTM
perform well; GRU is slightly better. Compared to RNN-
based model, the CNN-combined model has a slightly better
performance.However, the overall performance is still lower
than the performance in the reference paper.

6. Conclusion

Compared to the reference paper, in which the worst
accuracy is about 0.87, the best accuracy is about 0.83. Thus

Weibo dataset
Class Accuracy Precision Recall F1

tanh-RNN 0.873 0.816 0.964 0.884
LSTM 0.896 0.846 0.968 0.913
GRU 0.908 0.871 0.958 0.913

TABLE 1. REFERENCE RESULT IN WEIBO DATASET

Weibo dataset
Class Accuracy Precision Recall F1

tanh-RNN 0.745 0.740 0.732 0.736
LSTM 0.781 0.769 0.802 0.776
GRU 0.811 0.802 0.816 0.802

CNN-RNN 0.824 0.817 0.830 0.814
TABLE 2. OUR RESULT IN WEIBO DATASET

the problem may be the process of handling data, author did
not state the process clearly, so I deal with the data in my
own way. Due to lacking much understanding of how to deal
with text and not have some tricks to capture the import
feature of sequence of text, the result is not as good the
origin result even when I modify the network and actually
this modification improve the performance. It is regretful
that I fail to achieve a better result compared to the reference
paper. At the same time, by comparing the result with those
of the traditional method, actually we can conclude that with
regard to the text, RNN is an effective way to capture the
import feature at present.

References

[1] J. Ma, W. Gao, P. Mitra, S. Kwon, B. J. Jansen, K.-F. Wong, and
M. Cha, “Detecting rumors from microblogs with recurrent neural
networks.” in IJCAI, 2016, pp. 3818–3824.

[2] G. W. Allport and L. Postman, “The psychology of rumor.” American
Journal of Sociology, 1947.

[3] K. Cho, B. V. Merrienboer, D. Bahdanau, and Y. Bengio, “On
the properties of neural machine translation: Encoder-decoder ap-
proaches,” Computer Science, 2014.

[4] Y. Ding, J. Han, J. Tang, and P. S. Yu, “Proceedings of the acm sigkdd
workshop on mining data semantics,” in ACM SIGKDD Workshop on
Mining Data Semantics, 2012.

[5] S. Kwon, M. Cha, K. Jung, W. Chen, and Y. Wang, “Prominent
features of rumor propagation in online social media,” in IEEE
International Conference on Data Mining, 2014, pp. 1103–1108.

[6] X. Liu, A. Nourbakhsh, Q. Li, R. Fang, and S. Shah, “Real-time
rumor debunking on twitter,” in ACM International on Conference
on Information and Knowledge Management, 2015, pp. 1867–1870.

[7] J. Ma, W. Gao, Z. Wei, Y. Lu, and K. F. Wong, “Detect rumors using
time series of social context information on microblogging websites,”
in ACM International on Conference on Information and Knowledge
Management, 2015, pp. 1751–1754.

[8] K. Wu, S. Yang, and K. Q. Zhu, “False rumors detection on sina
weibo by propagation structures,” in IEEE International Conference
on Data Engineering, 2015, pp. 651–662.

[9] Z. Zhao, P. Resnick, and Q. Mei, “Enquiring minds: Early detection
of rumors in social media from enquiry posts,” in International
Conference on World Wide Web, 2015, pp. 1395–1405.

[10] I. Sutskever, J. Martens, and G. E. Hinton, “Generating text with
recurrent neural networks,” in International Conference on Machine
Learning, ICML 2011, Bellevue, Washington, Usa, June 28 - July,
2016, pp. 1017–1024.

[11] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” vol. 4, pp. 3104–3112, 2014.

[12] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, p. 436, 2015.

[13] A. Friggeri, L. A. Adamic, D. Eckles, and J. Cheng, “Rumor cas-
cades,” Dalton Transactions, vol. 43, no. 16, pp. 6108–19, 2014.

[14] K. Lee, J. Caverlee, and S. Webb, “Uncovering social spammers:
social honeypots + machine learning,” in International Acm Sigir
Conference on Research Development in Information Retrieval, 2010,
pp. 435–442.

[15] A. H. Wang, “Don’t follow me: Spam detection in twitter,” in
International Conference on Security and Cryptography, 2011, pp.
142–151.

[16] A. Gupta, H. Lamba, P. Kumaraguru, and A. Joshi, “Faking
sandy:characterizing and identifying fake images on twitter during
hurricane sandy,” in International Conference on World Wide Web,
2013, pp. 729–736.

[17] J. Ratkiewicz, M. Conover, M. Meiss, B. Gonalves, A. Flammini, and
F. Menczer, “Detecting and tracking political abuse in social media,”
in International Conference on Weblogs and Social Media, Barcelona,
Catalonia, Spain, July, 2011.

[18] J. Ratkiewicz, M. Conover, M. Meiss, S. Patil, A. Flammini, and
F. Menczer, “Truthy:mapping the spread of astroturf in microblog
streams,” in International Conference Companion on World Wide
Web, 2011, pp. 249–252.

[19] Rumelhart, E. David, Hinton, E. Geoffrey, Williams, and J. Ronald,
“Learning representations by back-propagating errors,” vol. 323, no.
6088, pp. 399–421, 1986.

[20] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 157–166, 2002.

[21] A. Graves, “Generating sequences with recurrent neural networks,”
Computer Science, 2013.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] R. Collobert, “Natural language processing from scratch.”

[24] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. 7, pp. 257–269, 2011.

