
Source-Destination Connection in
Brain Network

May 27, 2018

Li Kaijian, 515030910566

Contents

1 Introduction 3
1.1 What is Brain Network . 3
1.2 Different Kinds of Brain Network 4
1.3 Features of Brain Network . 4

1.3.1 ROI and Modules . 5
1.3.2 Degree Distribution . 5
1.3.3 Clustering Coefficient and Path Length 5
1.3.4 Small World Properties 6
1.3.5 Dynamic . 6

2 Related Work 6
2.1 Related Work in Brain Network Model 6
2.2 Related Work in Source-Destination Connection 7

3 Model and Problem Formulation 7
3.1 Exponential Random Graph Model 7
3.2 Problem Formulation . 8

4 Computational Complexity 8

5 Algorithms 9
5.1 MDP-based Algorithm . 9

5.1.1 Mapping the problem into MDP 10
5.1.2 Dynamic Programming Algorithm 11

1

5.1.3 Computation Complexity 11
5.2 Approximation Algorithm . 11

5.2.1 Greedy Algorithm . 12
5.2.2 Intersection Sort Algorithm 12

6 Simulations 12
6.1 Gibbs Sampling . 12
6.2 Simulation Parameters Setting and Results 13

7 Conclusion 15

8 References 15

2

1 Introduction

Determination of source-destination connectivity in networks has long
been a fundamental problem, where no one has tried solve this problem in a
brain network. In this research I introduces the basic information about brain
network and give a brain network model. Then I define the source-destination
connectivity determination problem formulation on brain network model and
prove that this optimization problem is NP problem, which means this prob-
lem cannot be solved in polynomial time unless P=NP. I give an optimal
algorithm based on MDP. But this algorithm is time computational. I fur-
ther proposed three approximation algorithms. Finally I use matlab to make
a simulation to compare these algorithms.

In section one I will introduce some basic information and features about
brain network. Similar content can be find in [1].

1.1 What is Brain Network

The functional organization of the brain is characterized by segregation
and integration of information being processed. A central paradigm in mod-
ern neuroscience is that anatomical and functional connections between brain
regions are organized in a way such that information processing is near op-
timal. Functional interactions seem to be provided by synchronized activity,
both locally and between distant brain regions. Brain networks thus con-
sist of spatially distributed but functionally connected regions that process
information. Figure 1 shows a instance of brain network.

Figure 1: a brain network

3

1.2 Different Kinds of Brain Network

There are two different but related forms of brain network.

• Anatomical connectivity, also called structural connectivity, which forms
the connectome through synaptic contacts between neighboring neu-
rons or fiber tracks connecting neuron pools in spatially distant brain
regions

• Functional connectivity which is defined as the temporal dependency of
neuronal activation patterns of anatomically separated brain regions.

Figure 2 shows how we can get these brain network from a true brain. More
and more studies are focusing on brain network with graph theoretical anal-
ysis. In this report I will focus on functional network.

Figure 2: two different kinds fo brain network

1.3 Features of Brain Network

Though it’s has been a long time since people start to study brain net-
work, we still don’t figure out the pattern of brain network. Graphical models
provide means to characterize complex brain connectivity networks, so-called
brain graphs. Graphs may be constructed for anatomical networks as well as
for functional networks. Thus, they offer a theoretical framework to describe
the structural and functional topology of system-wide brain networks. Here I
will introduce the some theoretical concepts for Graphical Models and some
features of brain network. These features provides a way to construct the
brain network model.

4

1.3.1 ROI and Modules

Considering the functional organization of the brain into local interac-
tions performing low-level information processing, called regions of interest
(ROI) or modules, and long-range couplings supporting distributed infor-
mation processing and providing control and high-level information fusion,
brain networks form graphs intermediate between regular graphs where only
nearest neighbor nodes are connected and random graphs where all nodes
are connected randomly. Functional networks thus form graphs G(V, E),
where ROI are called vertices {V |vn : n = 1, ..., N}, and long-range cou-
plings correspond to edges {E|enm : n,m ∈ {1, N}} indicating key pathways
of information processing in the brain. The figure 3 shows this feature.

Figure 3: ROI and Modules

1.3.2 Degree Distribution

Degree distribution is a global measure of a graph. P (V,E|K) is the
likelihood of a vertex to have degree k. From the researches show that the
brain network has a non-Gaussian degree distribution.

1.3.3 Clustering Coefficient and Path Length

local clustering coefficient C(v) measures if all directly connected neigh-
bors w ∈ U(v) of node v are also connected to each other. It’s one of the
local measures.It is related to the presence of the triangle motif in a network

5

and represents the local connectivity or cliquiness of the node. An aver-
age over all vertices of the network yields the average cluster coefficient CG
which provides a global measure of the network connectivity and represents
the likelihood of neighboring short connections.

A path length L is the distance form one node to another node. Average
path length is the average length of all path between any two nodes in the
brain network. Is represents the probability of a long path and reflects the
degree of integration of the given graph.

1.3.4 Small World Properties

If a network has a high C(many short connections) and small L(few long
connection), this feature is called small world properties[2].

1.3.5 Dynamic

The brain network is always changing. So it’s difficult to use a graph to
describe it. Here I will ignore this feature, seem the network is immobile as
many studies do.

2 Related Work

2.1 Related Work in Brain Network Model

There isn’t a universal graph model for the brain network. All the exiting
model just focus on special feature. Here I choose the exponential random
graph to build the brain network as in [3].

Pθ(Y = y) = K(θ)−1exp(θTg(y))

Here y is an instance of brain network, g(y) is the feature vector of the
brain network y and θ is the weight vector of feature vector. K(θ)−1 is
to make sure that the sum of probability is 1.Figure 4 shows all important
metrics.The GWD, GWESP, and GWDSP statistics is discussed in [4]. GWD
is to control the node degree distribution. GWESP is a local efficiency metric,
which is similar to C. GWNSP is a global efficiency metric, which is similar
to L. A larger GWNSP means there is a high probability to have a long path.
Here I will just give the equations of these metric.

6

Figure 4: Subset of explanatory network metrics

GWD(y, τ) = (eτ)2
n−1∑
i=1

[(1− e−τ)i − 1 + ie−τ]GWDi(y)

GWESP (y, τ) = eτ
n−2∑
i=1

[1− (1− e−τ)i]GWESPi(y)

GWNSP and GWDSP have the same formulation with GWESP.

2.2 Related Work in Source-Destination Connection

There is similar work about random graph[5]. My time complexity proof
and the solution algorithms of this problem are inspired by the idea in it.

3 Model and Problem Formulation

3.1 Exponential Random Graph Model

We denote a exponential random graph by G=(V,θ,g,c), where V is the
set of vertices, θ is the weight vector in exponential random graph, g is

7

function to transform the network into a p-dimensional feature vector. c is
the cost of edges in G.This work is different with [5], because the existence
probability of each edge is dependent and there may be an edge in any two
vertices. Let G be a underlying deterministic graph. The probability of G
is:

Pθ(G) = K(θ)−1exp(θTg(G))

3.2 Problem Formulation

Here we define three concepts: temporary state, adaptive testing strategy,
The Connectivity Determination Problem. These definition can all be find
in [5]. But for convenience I will introduce them again here.

• (Temporary State) A temporary state s of a exponential random graph

G=(V,θ,g,c) is an |V |(|V |−1)
2

-dimension vector with element 0, 1 and *.

And we define S = {0; 1; ∗}
|V |(|V |−1)

2 to be the set of temporary states
associated with G. Additionally, we denote the condition of edge e in
state s as se. For a temporary state s, we define it to be a terminating
state if either the edge set {e|se = 1} forms a superset of an s-t path
in G or edge set {e|se = 0} forms a superset of an s-t cut in G. We
successfully determine the s-t connectivity by reaching a terminating
state.

• (Adaptive Testing Strategy) An adaptive testing strategy is a mapping
π : S → E ∪ {⊥}. Initially starting from the all- state, an adaptive
testing strategy specifies which edge to test (or terminate as denoted
by ⊥) based on the previous testing outcomes.

• (The Connectivity Determination Problem) Given an uncertain di-
rected graph G=(V,θ,g,c) with two nodes s, t ∈ V designated as source
and destination, respectively, the goal is to find an adaptive testing
strategy π that incurs the minimum expected cost.

4 Computational Complexity

Here I will investigate the time computational complexity of the connec-
tivity determination problem in brain network.By demonstrating the hard-
ness of two closely related problems, we show both computing the testing
strategy with the minimum expected cost holistically and sequentially are
NP-hard.

8

Theorem 1.The decision version of Connectivity Determination Problem is
NP-hard

Proof: Inspired by [5], here I use the similar idea to proof it. I prove the
theorem by reduction from the s-t reliability problem [6]: Given a directed
graph G and two nodes s and t, the s-t reliability is to compute the probability
of s being connected to t assuming the edges in G exist independently with
probability 1

2
. As s-t reliability problem is #P-hard [6]. I make a little change

that let |E| always be |V |(|V |−1)
2

, obviously this problem is #P-hard.
The reduction performs as follows.For a graph G(V), we transform it to a

exponential random graph G(V,θ,g,c) by adding en edge M between s,t and

set the rest of G as just the same. The cost to test M is |V |(|V |−1)
2

2
|V |(|V |−1)

2
+1

and the cost of testing other edges is 1. Then let θ = ~0. So the probability
of all edges is 1

2
.

Now this formulation is just as it in [5]. The following step is just the
same in [5].

Theorem 2.Deciding the optimal first edge to test (the edge tested by the
optimal strategy in the initial state) is NP-hard.

This proof is also similar in [5]. I use the set cover problem to proof it.
[5] has already proofs that this theorem is right for random graph. So if I can
use exponential random graph to make the same construction, this theorem
is proved. There are two different part. The first part is in exponential
random graph any two vertices may have an edge, so the set cover can’t be
transform into the same graph formulation in [5]. But if we set the cost of
these redundant edges as infinite. Then it has the same result. Because any
algorithm won’t test these edges first. The second part is the probability of
each edge in exponential random graph is unknown. So here we set θ = ~0.
So probability of every edge is 1

2
. Because we can set the cost of every edge

arbitrarily, we can get the same result that the optimal first edge to test is
the edge M from s to sM if and only if there does not exist a cover of size
smaller than k in the original set cover instance.

5 Algorithms

5.1 MDP-based Algorithm

I use Markov Decision Process(MDP) form an optimal algorithm. But
since I have proved in former section, this problem is NP-hard. So this
algorithm is time computational. There are two parts in this algorithm:

9

get the MDP formulation of this problem and use dynamic programming
algorithm to get the optimal strategy π.

5.1.1 Mapping the problem into MDP

The key components of an MDP include decision epochs, state space,
action sets, transition probabilities, rewards, decision policy and optimality
criterion. This part is inspired by [5]. I make some changes in transition
probabilities. So here I just introduce the state space, action sets, transition
probabilities and rewards

• State Space: The state space of an MDP represents the possible
states that a system can be in. It naturally corresponds to the set of
temporary states S in this problem. We partition the state space S into
|E| disjoint subsets based on the number of edges having been tested
in the states as S = S0 ∪ S1 ∪ ... ∪ |E|. In decision epoch i, the system
can only be in a state in Si.

• Action Sets: For each state s 2 S, there is a set of actions that can
be performed under it. We define the associated action set As of state
s as the set of edges that have not been tested in s. Additionally, for
terminating states, their action set also contains the terminating action
⊥. As a result, the whole action set A = ∪s∈SAs = E ∪ {⊥}.

• Transition Probabilities and Rewards: The transition probability
is just the existence probability p(e),where e is the edge for next testing.
The rewards is -c(e). But in this problem, we can’t get the p(e) directly.
Fortunately, we can calculate p(e) in current state by the probability
of two after-state s · e and s\e. First when we calculate P(Y=y) in
exponential random graph model, we ignore the K(θ)−1. We will see
this won’t influence the final strategy. Suppose we have the P (s · e)
and P (s\e) now for every un-testing edge e. Then we can get P(s) =

P (s · e) + P (s\e). And P (e|s) = K(θ)−1exp(θT g(s·e))
K(θ)−1exp(θT g(s·e))+K(θ)−1exp(θT g(s\e)) =

exp(θT g(s·e))
exp(θT g(s·e))+exp(θT g(s\e)) = P (s·e)

P (s·e)+P (s\e) . So in the first epoch, since all

edge in the state s all tested, we can calculate the P(s) directly. Then
for the follow epoch, we already calculate the state probability which
we need in this epoch in the last epoch, so we can calculate all state
probability for state s in this epoch. The transition probability function
is the same in [5](but we need do some extra calculation to get p(e)).

10

5.1.2 Dynamic Programming Algorithm

This part is the same as it in [5]. [5] proved that dynamic programming
and this MDP formulation can lead to optimal adaptive testing strategies.
The full algorithm is shown in Algorithm 1

Algorithm 1 The MDP-based algorithm

Input: Exponential Random Graph G(V, θ, g, c), source s, destination t
Output The optimal testing strategy π
1: Initialize: uπ(s) = 0, for all s ∈ S|E|
2: for i = |E| to 0 do
3: for All s in Si do
4: if i = |E| then
5: p(s) = exp(θTg(s))
6: else
7: p(s) = p(s·e) + p(s\e)
8: if s is a terminating state then
9: uπ(s) := 0, π(s):=terminate
10: else

11: e∗:=arg maxe∈As{−c(e) + p(s·e)
p(s·e)+p(s\e)uπ(s · e) + p(s\e)

p(s·e)+p(s\e)uπ(s\e)}
12: uπ(s) := −c(e∗) + p(s·e∗)

p(s·e∗)+p(s\e∗)uπ(s · e∗) + p(s\e∗)
p(s·e∗)+p(s\e∗)uπ(s\e∗)

13: π(s) := e∗

return π

5.1.3 Computation Complexity

First there are 3
|V |(|V |−1)

2 temporary state. Qualifying whether a state s is
a terminating state can be realized by querying the s-t connectivity on two
deterministic graphs G1

s(V) and G2
s(V). In G1

s(V) if se is 1, we add edge
e into G1

s(V). In G2
s(V) if se is 1 or *, we add edge e into G2

s(V). This
process needs O(|V |2) by Union-Find. Calculate p(s) is O(|V |2) because it
need O(|V |2) time to find the features in defined. And selecting the optimal
action for each state requires O(|V |2). So the total time complexity of this

algorithm is O(|V |23
|V |(|V |−1)

2).

5.2 Approximation Algorithm

Here I introduce two approximation algorithm, which both have polyno-
mial time complexity. And the second approximation algorithm has a very
good approximation guarantee.

11

5.2.1 Greedy Algorithm

The first approximation algorithm is a greedy algorithm which always
choose the edge with smallest cost. Its time complexity is O(n2). And it’s

proved the approximation ratio is O(|V |(|V |−1)
2

)[5].

5.2.2 Intersection Sort Algorithm

This algorithm is proposed in [7]. It tests the edge with the minimum
cost that lies on the intersection of a shortest s-t path and a minimum s-t
cut in the uncertain graph under the current state. The basis of the third
heuristic is the fact that we do not need to take the optimistic or pessimistic
view since the intersection of any minimal path set and any minimal cut set is
non-empty. The time complexity is O(|V |4) because it needs O(|V |2) to find
the shortest s-t path by Dijkstra algorithm(it can be reduce to O(|V | log |V |))
and O(|V |2) to find minimum s-t cut. And it tests at most O(|V |2) edges, so
the final time complexity is O(|V |4). In simulations, this algorithm performs
very close to optimal algorithm.

6 Simulations

The biggest problem in simulation is that we don’t know the exact dis-
tribution of exponential random graph(unless we calculate all instance, it is
impossible for a large network). So we can’t get samples directly. Here I
use Gibbs sampling algorithm to get the samples, then compare the optimal
algorithm and the approximation algorithms.

6.1 Gibbs Sampling

Gibbs sampling is a Markov chain Monte Carlo (MCMC) algorithm for
obtaining a sequence of observations which are approximated from a specified
multivariate probability distribution, when direct sampling is difficult. The
key idea of MCMC is that is we choose a proper transition matrix, the states
distribution will finally converge to the target distribution. So the observed
data is the samplings which we want. And the idea of Gibbs sampling is to
use the conditional distribution as the transition matrix.

In exponential random graph it is difficult to know the probability of an
network instance, but it’s easy to get the conditional distribution. The idea

12

is similar with the transition probabilities part in MDP former. If we seen
each edge as a variable whose value is 0 or 1. Then our goal is to determine:

P (xi|x1, x2, ..., xi−1, xi+1, ..., x |V |(|V |−1)
2

)

Here the x are all 0 or 1. For convenience we denote it as P (xi|...), where
... means all the other edges. Because the sum of probability of variable xi
to get 0 and 1 is 1. That is P (0|...) + P (1|...) = 1. We can calculate it in
this way:

P (xi|...) =
P (xi|...)

P (xi|...) + P (1− xi|...)

=
K(θ)−1exp(θTg(yei=xi))

K(θ)−1exp(θTg(yei=xi)) +K(θ)−1exp(θTg(yei=1−xi))

=
exp(θTg(yei=xi))

exp(θTg(yei=xi)) + exp(θTg(yei=1−xi))

MCMC always needs a large iteration number to converge for exponential
random graph. Because of the time limit, in the simulation I set the iteration
number of Markov chain as 1500.

6.2 Simulation Parameters Setting and Results

In general a brain network is about 100 vertices. Because of the MDP-
based algorithm has a high time complexity, I run simulations on a small
network(only five vertices) with the MDP-based algorithm and the approx-
imation algorithms and a large network(90 vertices) with only the approxi-
mation algorithms. The large network use 720 samples and randomly choose
6 s-t pairs. The small network use all possible samples and randomly choose
6 s-t pairs.

For the exponential random graph model I use the 4 most important
metrics: edges, GWD, GWESP, GWNSP. The corresponding θ is [-4.48,1.51,-
0.15,1.12]. These parameters come form [3]. Author fits the model by MCMC
MLE from data of 10 volunteer’s brains. The cost is Gaussian distribution
with mean 50 and standard deviation 10. Figure 5 and Figure 6 show the
results.

13

Figure 5: Simulation on a large network

Figure 6: Simulation on a small network

14

From figure 5 we can see the Intersection sort algorithm performs better
than greedy algorithm. From figure 6 we can see that Intersection algorithm
is very close to the optimal algorithm. Because it is difficult to get the real
brain data, I just run the algorithm on the network model instead of a real
brain network.

7 Conclusion

In this paper, we modeled the brain network into a exponential random
graph which determinate the probability of every instance by some metric in
the network. Assuming that during each determining process we are associ-
ated with an underlying graph, the existence of each edge can be unraveled
through edge testing at a cost of c(e). Then we proposed the problem to
find the optimal strategy incurring the minimum expected cost. And we
proved this problem is NP-hard both holistically and sequentially. Then we
give a MDP-based optimal algorithm and two approximation algorithms. We
analysis the detail and the time complexity of these algorithms.Finally we
make two simulation to see the simulation results and to compare these three
algorithms.

8 References

1. E.W.Lang,1 A.M.Tome,I.R.Keck,J.M.Gorriz-Saez,and C.G.Puntonet, Brain
Connectivity Analysis: A Short Survey, Computational Intelligence
and Neuroscience , 2012, 2012(4):412512

2. D.J.Watts and S.H.Strogatz, Collective dynamics of ’smallworld9 net-
works, Nature, vol. 393, no. 6684, pp. 440442, 1998.

3. Sean L.Simpson,Satoru Hayasaka , Paul J.Laurienti, Exponential Ran-
dom Graph Modeling for Complex Brain Networks. arxiv:1007.3230

4. Hunter DR, Goodreau SM, Handcock MS (2008) Goodness of fit of
social network models. Journal of the American Statistical Association
103: 248-258.

5. Xinzhe Fu, Zhiying Xu, Qianyang Peng, Luoyi Fu, Xinbing Wang,
Complexity vs. Optimality: Unraveling Source-Destination Connec-
tion in Uncertain Graphs . IEEE INFOCOM 2017

15

6. M. O. Ball, Computational Complexity of Network Reliability Analysis:
An Overview, in IEEE Trans. on Reliability, Vol. 35, No. 3, pp. 230-
239,1986

7. L.A. Cox Jr., Y. Qiu, W. Kuehner, Heuristic least-cost computation of
discrete classi7cation functions with uncertain argument values, Ann.
Oper. Res. 21 (1989) 121.

16

