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ABSTRACT

Social network has become a powerful communication tool which people around
the world rely on. Patterns of information diffusion on social networks like Twitter
and Facebook turn out to be more flexible but also more traceable, which shows
great value to both researchers and practitioners. In this paper, we proposed a
Retweet-Tree encoding based matrix factorization method (ReTrend) to model
the information diffusion process at a microscopic level. Specifically, this method
borrows the idea of collaborative filtering for retweet behavior prediction. Our
work differs from extant studies by avoiding onerous feature extraction and engi-
neering, while overcoming the problem of insufficient information leverage. Sub-
stantial experiments on a real-world dataset (Twitter based) show improvements
of our proposed ReTrend framework over the state-of-the-art methods.

1 INTRODUCTION

Social networks have provided an unprecedentedly flexible platform for information diffusion. Stud-
ies on social networks have drawn a profusion of academic attention, ranging from real-time event
detection to text-based sentiment analysis. All the contents people read, watch, share or repost on
social networks are information entities, and the systematic operation of social network essentially
depends on the latent pattern of information diffusion. The mastery of this pattern will bring im-
mense value to people. For example, advertisers hope to spread their commodity information better,
while news media would also love to manipulate this pattern to maximize their visibilities. Thus,
insights into the pattern of information diffusion will benefit both academia and industry.

Existing studies on information diffusion can be mainly classified into three types by methodology,
namely, feature-based methods, time-series modeling and collaborative filtering methods. Feature-
based methods either focus on the selection of different feature sets or the construction of hyper-
features which thereafter get embedded into machine learning frames. Time-series modeling con-
centrate on the essence of information diffusion and aim to predict cascade size of anytime by
stochastic point process modeling. In this work, we focus on collaborative filtering approaches for
some of its improvable traits.

Collaborative filtering was initially proposed to address recommendation system problems. Stimu-
lated by the Netflix Prize, this method has been proved to be greatly successful in recommendation
system by modeling users rating or adoption behaviors. The key idea underlying entails the use
of two sociological concepts, homophily and influence, among individual users or communities.
Enlightened by this, researchers soon found the applicability of CF in the context of microscopic
information diffusion modeling to predict the diffusion of an information entity (i.e., post) is to
predict whether a user would adopt (retweet) it, and the reason for the adoption of a post can be
comparable to that of a commodity.

However, extant work on collaborative filtering methods are facing some universal problems. One
of them is that CF-based methods normally suffer from insufficient information leverage. The most
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basic idea of collaborative filtering is to carry our predictions based on users historical behaviors,
which are statically recorded in a matrix. To leverage more auxiliary information, researchers tried
to introduce social relationships and even item content features. However, all these works fail to
find the latent bottleneck users historical behaviors are originally a permutation including tempo-
ral information (retweet sequence), spatial information (retweet topology), user-related information
(user latent features) and content-related information (post latent features), however, current studies
simply treat all the above information as a retweet matrix which is basically a flat snapshot, losing
much of the necessary information.

In this work, we proposed a Retweet-Tree encoding based matrix factorization method (ReTrend)
to model the information diffusion process at a microscopic level. We introduce four matrices and
cover almost all information of an observable retweet-tree. The four matrices are inherently an en-
coding of the behavior permutation, and the training process can be deemed as a dynamic inference
process of the most likely final retweet-tree, based on currently observable data.

The main contributions of this work are as below:

1. We present a matrix factorization architecture ReTrend to almost-best leverage the permuta-
tion of users’ historical behaviors. ReTrend covers almost all information of an observable
retweet-tree, and play a role of an encoder of a behavior permutation. The training process
can be deemed as a dynamic inference process of the most likely final retweet-tree, based
on currently observable data.

2. To the best of our knowledge, this is the first work that casts insight into the relationship
between Collaborative Filtering and a retweet-tree, namely, the essence of an information
diffusion process. Specifically, we bridge Matrix Factorization with traditional tree-based
analysis.

3. We introduce a novel concept of “user resistance” over a latent feature space. Apart from
the Resistance Matrix, we also introduce other matrices to jointly model information diffu-
sion and to reach a better performance.

4. We utilize a multi-layer perceptron for resistance inference to endow ReTrend with a high
level of non-linearities and analytically show that MLP can be used as a non-linear trans-
formation module in ReTrend for other usage.

2 RELATED WORK

Many studies have casted insights into retweet prediction using CF. Li et al. (2015) takes the rele-
vance of users interests, tweets content, and publishers influence into account simultaneously and
uses SVD to track out the implicit factors. Jiang et al. (2015) carries out Matrix Factorization based
on tweet content and introduces message clustering as a regularization factor into their Centroid-
based Regularization Prediction Model (CRPM). Hoang et al. (2017) extends user-post matrix into
a 3-order tensor by introducing temporal dimension and carries out tensor decomposition to predict
adoption number at any given time. Numerous studies have focused on CF-based cascade prediction
and we will present a few to illustrate our motivation.

SoRec Ma et al. (2008) assumes that the users should share the same user preference vector ui in
the repost space and the social space, which is to say that the repost matrix and the social matrix
should be coherent. SERec Wang et al. (2017) assume that people get information of items from
their online friends and they do not have to share similar preferences, which is less restrictive and
seems closer to reality. Instead, they utilize social information to capture user exposures rather than
user preferences. HF-NMF Cui et al. (2011) jointly incorporates social factors and content factors
for recommendation. It believes that the product of the latent user matrix and the latent item matrix
should be the item-level social influence instead of the repost matrix directly. They construct an
user-user influence matrix and use LDA to obtain an item-topic matrix.

3 PROPOSED FRAMEWORK

We have noticed a common phenomenon in social networks. Nowadays, people are not so easy
to be convinced into reposting. Some people may get interested in an article or tweet, still he/she
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Figure 1: An overview of ReTrend

simply ‘likes’ the content without reposting. Thus, he/she makes no contribution to the diffusion of
this information. We consider this intention ‘to be convinced’ to repost as an inherent attribute of
user.

We also note that this attribute seems vary dramatically among users. Some people refuse to
repost a content even though he is extremely intrigued, while some others repost a tweet im-
mediately once this tweet entertains him/her a bit. In this work, we name this inherent attribute
‘resistance’, which varies over latent space but remains fixed for a fixed user. We deem that retweet
behavior consists of two stages in a users view: First he/she decides whether to get interested; If
he/she has no interests in some content then no retweet behavior will be triggered; If he/she is
interested in the content, then he/she decides whether to retweet it. The second step is where the
‘resistance’ plays a role.

We defined following matrices:

• Subscription Matrix: user-user, Sij = 1 when user i subscribes user j, otherwise Sij = 0.

• Contagion Matrix: user-item, Cij = number of reposts triggered by user i in his locality
cardinality.

• Retweet Matrix: user-item, Rui = 1 if user u retweet post i.

• Resistance Matrix: user-item, Tui = proportion of user u’s friends who retweet the post, if
u DID NOT retweet i; otherwise Tui = 0.

We also defined some factor matrices:

• Interest Matrix (X): User latent matrix w.r.t. interest.

• Item-Level Resistance Matrix (Z): User latent matrix w.r.t. resistance.

• Influence Matrix (Y): User latent matrix w.r.t. his social influence.

• Attraction Matrix (A): Item latent matrix w.r.t. its attraction.

3.1 RETREND

3.1.1 ENCODING OF RETWEET-TREE

The diffusion process of a post is often intuitively represented as a tree-based structure as is shown
in Fig.2. The basic assumption behind a retweet-tree model is that a user’s retweet behavior is trig-
gered solely by one other user. This is reasonable because a user who finally decides to retweet a
post necessarily ‘choose’ a previous retweeter and retweet from him/her. One can say that retweet
tree is a most intuitive way to represent an information diffusion process with all the relevant infor-
mation included: permutation, topologies, user and the specified post which diffuses over the tree.
Note that retweet-tree is essentially a subgraph extracted from a network, namely, user relationship
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network N . In this sense, information diffusion process can be seen as a stochastic process on the
whole network N where nodes on the retweet-tree randomly trigger their one-hop neighbors to be
assimilated and added into the retweet tree.

Figure 2: Tree-based Retweet Model Zhao et al. (2015)

In this work, we define a user network as a directed graph rather than an undirected one, because
prevalent social networks like Twitter and Facebook are all one-way networks, and an undirected
graph can be basically regarded as a special case of directed graph. Part of a user network are shown
in Fig.3.1.1.

(a) Part of a one-way user network (b) Part of a two-way user network

Figure 3: Two types of user network

To be clear, lets introduce colors to specify different meanings. A blue edge means a subscribing
relationship. A red edge means the parent node succeeds in triggering the child node to retweet. A
black edge means the parent node fails to make the child node retweet anyway. Note that what we
really focus on is the retweet-tree. To avoid ambiguity, we name the edge in user network (i.e., blue
ones) “fake edges”, name the edge in a retweet-tree (i.e., red ones) “branches”, and name the edge
between a retweeter and a user who refuse to retweet (i.e., black ones) a “dead edge”.

An graphic illustration is shown in Fig.3.1.1. Initially, all edges are fake edges. In a), a user retweet a
post. We say he/she is assimilated, or added into a retweet-tree. In b), we know that two child nodes
are theoretically exposed to the post. One of them is assimilated, while the other has not seen it yet.
Thus, one fake edge turns into a branch, while the other one remains a fake edge. In c), another
three child nodes are exposed to the post. Two of them are assimilated. The other one does see it
but refuse to retweet. Maybe he is not interested. Thus, two fake edges turn into branches, while
the other one turns into a dead edge. d) shows a possible state after some time. At this moment, the
subgraphs involved with red paths constitute a retweet-tree.

Now we show how our proposed ReTrend encodes the observable retweet-tree using subscription
matrix, contagion matrix, resistance matrix and retweet matrix. We denote the retweet-tree for a
post p at observing time τ is denoted as Rtpτ . If a user u shows up in Rtpτ , that means u retweeted
the post p before the observing time. Suppose u is a subscriber or follower of user v and retweet p
right from v. Then in Rtpτ , v is u’s parent node.
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(a) a) (b) b) (c) c) (d) d)

Figure 4: A generative process to clarify the definition of edge types in this work.

Subscribe Matrix S For a partially observable retweet-tree Rtpτ , Subscribe Matrix S provides the
information of possible parent-child relationship, namely, the whole user network N . As the diffu-
sion process goes on, some edges e in {N/Rtpτ} might be added into Rtpτ ′ . In other words, Sub-
scription Matrix S informs of all possible edges in graph, from which some of them might become
branches in a retweet-tree.

Figure 5: Projection of a Subscribe Matrix onto a retweet-tree

Retweet Matrix R Binary matrix R represents the snapshot of users’ retweet behaviors up to the
observing time τ . If the value of Ru,i is 1, then u must be in Rtpτ and have an edge between herself
and another user, who must be one of the users she subscribed and also retweeted i. Hence, R
informs us which nodes are currently in Rtpτ and which are not.

Figure 6: Projection of a Retweet Matrix onto a retweet-tree

Contagion Matrix C The size of Contagion Matrix C is U ∗ I and the entry Cu,i represents the
retweet number of post i triggered directly by u among his friends. Clearly enough, for a partially
observable retweet-tree Rtpτ , matrix C provides intuitively represent the our-degrees of a involved
node. Note that Contagion Matrix C does not cover the information provided by Retweet Matrix R
because leaf nodes in the retweet-tree have 0 outdegrees, making them undiscernible from unassim-
ilated nodes without matrix R.
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Figure 7: Projection of a Contagion Matrix onto a retweet-tree

With S, C and R, we can put it this way: given a whole network N , a set of nodes Ui, the out-
degrees of all nodes in Ui, and the parent-child relationships of nodes in Ui, it can be proven that an
one and only subtree can be determined with a high possibility. The proof is still under refinement
and will be given as future work. This means that we actually achieve an approximate encoding of
the observable retweet-tree, i.e. the user behavior permutation. To the best of our knowledge, our
work is the first study to leverage users’ historical behavior to such a degree and clearly bridge the
relationship between Matrix Factorization based Collaborative Filtering and a Retweet-tree, which
is the essence of information diffusion.

3.1.2 MATRIX FACTORIZATION

This part first gives an intuitive illustration of the Matrix Factorization process in ReTrend, and then
formulate the model with maths.

Factorization of Subscribe Matrix S We deem that a user choose to subscribe another user because
he/she is interested in the authors content; and a user gets subscribed/followed because of his/her
social influence. So by performing MF on user-user subscriber matrix (S), we obtain users interest
latent matrix (X) and users’ influence matrix (Y ). In other words, the more a user u is interested,
and the more a user v is influential, then the more likely that u chooses to subscribe v, that is, the
entry Su,v approaches to 1. Note that S is not a symmetric matrix in our context. Assuming a
Gaussian observation noise, we have

Su,v ∼ N (XT
u Yv, σ

2
S)

where σ2
S represents the variation in case with S.

Factorization of Contagion Matrix C Every entry in Contagion Matrix (C) reflects two facts: to
what degree a user can trigger his friends retweet an item, and how attractive an item is. The more
influential is the user, the corresponding value will get larger; similarly, the more attractive the item
is, the value of the entry gets larger. So we decompose (C) into users influence matrix (Y ) and items
attraction matrix (A). Assuming a Gaussian observation noise, we have

Cu,i ∼ N (Y Tu Ai, σ
2
C)

where σ2
C represents the variation in case with C.

Factorization of Resistance Matrix T Every entry in Resistance Matrix (T ) reflects two facts: to
what degree a user resists the item, and again how attractive an item is. A larger value means more
friends retweeting the post while this user REFUSE to retweet, so this reflects the resistance degree,
or his tolerance towards something interesting. With respect to items, its conspicuous that the more
attractive the item is, the value of the entry gets larger. So we decompose (T ) into users ‘resistance
matrix (Z) and items’ attraction matrix (A). Similarly, we have

Tu,i ∼ N (ZTu Ai, σ
2
T )
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Factorization of Retweet Matrix R Every entry Ru,i in Retweet Matrix R directly represents a
retweet behavior of user u towards post i. We deem that u’s interests, resistance, the attraction of
i and the peer-to-peer influence of the previous retweeter (who exposes u to i, denoted by par(u))
all contribute to the triggering of u’s retweet behavior, namely Ri,j . We use a combination of Xu,
Zu and Ypar(u) to jointly represent the synthetic latent feature vector at a user-level. Denote the
combination as function g(·). Assuming a Gaussian observation noise, we have

Ru,i ∼ N (g(Xu, Zu, Ypar(u))
TAi, σ

2
R)

Note that par(u) represents a set of all retweeters whom u subuscribe. In this work, we define
function g as below

guk(Xu, Zu, Ypar(u)) =

{
max{Xuk − Zuk,maxv∈paru{vuk}}, par(u) 6= ∅
0, par(u) = ∅

This means that when none of the users who u subscribe has retweeted i, u has no chance to see it,
and thus is unlikely to retweet. It is mentionable that most extant work based on CF ingores the issue
of ”exposure”, which means one could only behave on seeing the item or post first. It might happen
that a community of users who could be highly interested into a post i never get a chance to see it,
and therefrom, retweet it, as is shown in Fig.8. Essentially, the information diffusion is blocked.

Figure 8: Information diffusion might be blocked

Entire Matrix Factorization Model The factor graph of ReTrend based on matrix factorization is
shown in Fig.1. We can now obtain the conditional distribution over all observed data as

p(S,C, T,R|X,Y, Z,A,σ) =
N∏
u=1

N∏
v=1

[
N (Su,v|XT

u Yv, σ
2
S)
]ISu,v

∗
N∏
u=1

M∏
i=1

[
N (Ru,i|g(Xu, Zu, Ypar(u))

TAi, σ
2
R)
]IRu,i

[
N (Cu,i|Y Tu Ai, σ2

C)
]ICu,i

[
N (Tu,i|ZTu Ai, σ2

T )
]ITu,i

We also place zero-mean spherical Gaussian priors on all latent feature vectors of users and posts,
which are

p(X|σ2
X) =

N∏
u=1

N (Xu|0, σ2
X)

p(Y |σ2
Y ) =

N∏
u=1

N (Yu|0, σ2
Y )

p(Z|σ2
Z) =

N∏
u=1

N (Zu|0, σ2
Z)

p(A|σ2
A) =

M∏
i=1

N (Ai|0, σ2
A)
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Then we obtain the log of the posterior distribution over latent features, which is the raw object
function of ReTrend. By modifying the log-likelihood, we obtain the loss function as

min
X,Y,Z,A

J(S,C, T,R,X, Y, Z,A) = ‖R− g(X,Z, Y )TA‖2 + λS‖S −XTY ‖2 + λC‖C − Y TA‖2

+ λT ‖T − ZTA‖2 + λX‖X‖2 + λY ‖Y ‖2 + λZ‖Z‖2 + λA‖A‖2

where ‖ · ‖2 represents the Frobenius norm, and λMtx =
σ2
R

σ2
Mtx

, Mtx = S,C, T · · · .

3.1.3 DYNAMIC INFERENCE OF RETWEET-TREE STRUCTURE

At the initial state, the matrices only store and encode the observable data up till the observation time
τ . Our purpose in this work is to carry out predictions on both the information diffusion process and
the final cascade size, which can be both illustrated by a closured retweet-tree. Note that only when
node has a assimilated parent node, can this node be exposed to the post and get assimilated. We
call this type nodes ”susceptible nodes”. Generally, a study on information diffusion requires a
inference on whether a susceptible node will be finally assimilated. But this description can be
actually ambiguous because a susceptible node may have more than one assimilated parent node.
In this work, based on our definition of different edges, we refine the problem to the inference on
whether an edge from a retweeter node to a susceptible node will finally become a branch in retweet-
tree. As a dynamic inference, the learning process can be accomplished by Matrix Factorization.

Fig.9 enunciates why Matrix Factorization would work in inferring the tree structure. we only show
four factor matrices, which represents users’ latent features and items’ latent features respectively.
These factor matrices are obtained by operating Matrix Factorization on the four observable matrices
and thus carry all necessary information. Inference of retweet-tree structure comes down to the
inference of edge: whether a fake edge is going to switch into a branch or a dead edge, and inference
of an edge involves user interest, user resistance, parent influence and post attraction, which are
learned by MF and then leveraged in this work.

Figure 9: Inference of potential branches in Matrix Factorization

Fig.10 illustrates the training process with Matrix Factorization based on the matrices we construct.
Note that a users all historical behaviors over the posts make contribution to the inference; infor-
mation about users features transcends different retweet-trees through Matrix Factorization. More
specifically, suppose user u has not retweeted post pn by observation time τ , and now we hope
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to predict whether he/she is going to retweet pn. Through MF, we can learn u’s latent features
(interests, resistance) based on his/her historical behaviors with other posts; learn his/her parents’
influence in a similar way and the attraction features of the post pn itself based on historical be-
haviors of user ensemble with post ensemble. Inherently, this is how homophily is leveraged using
Collaborative Filtering based on MF.

Figure 10: Training process and post-transcending inference of potential branches

3.1.4 CONVERGENCE OF RETREND

For a real-world retweet-tree, there are basically two possible states. The first state is Unstable
State, where there are still users who may or may not be assimilated. In other words, a retweet-tree
in Unstable State is still extensive. The other state is Deterministic State, where all user states have
been inferred already. In Deterministic State, there is no potential user left, and retweet-tree is not
extensive anymore. We say a retweet-tree in Deterministic State is closured.

Fig.11(a) shows a retweet-tree in Unstable State, where yellow nodes are potential retweeters and
the tree is still extensive. Fig.11(b) shows a retweet-tree in Deterministic State, while Fig.11(c)
shows another situation. Note that there is a node without any color in Fig.11(c). This means the
user never get a chance to get exposed to the post, that is, the diffusion is closured before passing it.
Also note that the author of the post is in this subgraph.

(a) a) (b) b) (c) c)

Figure 11: Unstable State (a) and Deterministic State (b)(c) of a retweet-tree

3.2 MLP FOR RESISTANCE INFERENCE

As is illustrated in He et al. (2017a), there are some possible limitations of MF caused by the use of
a simple and fixed inner product to estimate complex user-item interactions in the low-dimensional
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latent space. Therefore, we address the limitation by learning the interaction function using DNN
from data, and further implement it as a module in RBMF to enable higher level of non-linearilities
in our model.

Moreover, The MF process of Resistance Matrix are constrained by many factors, which is
practically difficult for our RBMF to optimize its parameters through learning the relationship
between intermediate matrices. Thus for now, we only use MLP for Resistance Matrix, that is,
replace the factorization of Resistance Matrix by a simple MLP module.

Figure 12: MLP module for Resistance Matrix
Item VectorUser Vector

MLP Layer 1

MLP Layer 2

MLP Layer X

ReLU

ReLU

MLP Module

Matrix A (mxk)
Matrix B (kxn)

Resistance Matrix

(1, 1) (1, 2) (1, 3) (m, n-1) (m, n)

Figure 12 shows the above process. Suppose Resistance Matrix can be factorized as matrices
A(m × k) and B(k × n), where each row of A is an intermediate vector of a particular user
and each column of B is an intermediate vector of particular item. Therefore, each element of
Resistance Matrix can be computed through the MLP module shown on the left.

We formulate the module as

ŷui = φout(φX(...φ2(φ1(vu,vi))))

where vu, vi represent intermediate user vector and item vector, respectively. φx are mapping
functions for each layer. The output of MLP module ŷui is the predicted resistance value for user
u and item i. And we use Mean Squared Error as loss function, which guarantees its parameters
updated with the gradient of same scale as other parts of RBMF in the backward pass.

Since both vu and vi are encoded with collaborative information while training, it is possi-
ble that we can obtain a more accurate Resistance Matrix with MLP.

4 EXPERIMENTS

4.1 DATASET

We use the dataset Twitter-Dynamic-Net1 and Twitter-Dynamic-Action2 in our experiments. The
data including subscription and retweet behaviors have more than 90,000 users and 99,696,204
tweets related, which are so sparse and large that it is difficult to either train or test without pre-
processing. Therefore, we select 10,000 most active users and 5,000 corresponding tweets that are
most interacted with the users. And for Resistance Matrix inference, we select 1,246 users whose
behavior are fully observed, together with 5,000 tweets stated above to validate the plausibility of
our method.

1https://www.aminer.cn/data-sna#Twitter-Dynamic-Net
2https://www.aminer.cn/data-sna#Twitter-Dynamic-Action
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4.2 IMPLEMENTATION DETAIL

4.2.1 IMPLEMENTATION OF RETREND

This part records and explains the necessary details of the implementation of ReTrend model to give
a instructive guidance to both readers and our future work.

Matrix Storage The process of matrix factorization entails entry updating over all of the eight
matrices (partially updating for the four observable matrices and fully updating for the four factor
matrices). With the real-world data from Twitter, if we store the whole matrix with a size of 10000 ∗
5000, then every epoch will involve 50 million updating with more than once matrix multiplication
calculating the gradients. This would be an unconceivably time-consuming process. To support the
SDG optimizing method with an randomized batch-data selection, we store the matrix in a tuple
style (user, post, value) where each entry will be represented by a line. Thus, the training process
will be much time-saving applying SGD.

Indicator Matrices It mentionable that the negative values in observable matrix do face the risk of
ambiguity, because a user might fail to adopt a post either for disinterest or just missing it. Default
settings of ReTrend will deem all negative entries as disinterest and thus will introduce considerable
errors. To handle this problem, we introduce indicator matrix to countervail the influence of entries.

Normalization Note that Retweet Matrix R and Subscribe Matrix S are binary while Contagion
Matrix C and Resistance Matrix T are real-valued. Take C for example, the absolute value of
Cu,i represents the triggered retweet number. To compress the value into interval [0, 1], the value
should be normalized. A potential issue brought by this is that the distribution of this value over
users comply to the heavy-tailed distribution, and thus most of the values will be close to 0 once
normalized. To address this problem, we calculate log of matrix C then training with the log matrix.

4.2.2 IMPLEMENTATION OF MLP

For MLP modules, we build our models with Keras. We train our model for 20 epochs with batchsize
256. To evaluate the performance of the inference process, we adopted the leave-one-out evaluation,
which has been widely used in literature He et al. (2017a)Bayer et al. (2016) He et al. (2017b). For
each user, we held-out his/her latest interaction as testing set and utilized the remaining data for
training.

5 RESULTS

5.1 PERFORMANCE OF RETREND

In our experiments, we empirically set the feature number as 30. We first load four observable
matrices data and randomize the four factor matrices. Thereafter, we training the whole model with
1000 epochs by SGD and output the final states of all the eight matrices. To predict the final cascade
size, we calculate the column-sum of the corresponding post in Retweet Matrix R. Nonetheless,
other matrices provide more insights into the information diffusion pattern.

We evaluate the following methods on the constructed dataset as our baseline:

• Random: The retweet prediction is a binary classification task. For each tweet, we ran-
domly select a decision of retweet or not.

• Word Vector Based SVM: In this method, we sum all the word vectors as the feature vector
of the tweet. Then we used these features to train a classifier (only evaluate in a subset of
our dataset).

• Neural Collaborative Filter: Implement and generalize MF in neural network combined
with MLP. The result is shown in Table 1

5.2 PERFORMANCE OF MLP

First of all, to validate the plausibility for Resistance inference using MLP module, we simply use
2 one-hot vector for User Vector and Item Vector followed by 2 embedding layers as input. The
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Table 1: Performance of our method with baseline

Method Precision Recall

Random 0.264 0.485
SVM 0.382 0.649
NCF 0.782 0.821

ReTrend 0.763 0.837

Table 2: MLP for Resistance: One-hot Vectors As Input

Layer Settings Accuracy-3 Accuracy-2

{128,64,32,16,8} 0.882 0.997
{64,32,16,8} 0.783 0.996

model converges quickly and the results are shown in Table 2.

Layer settings are the output size of each layer in MLP module. Acc-x denotes the ratio of
predictions with absolute error less than 10−x. Since resistance values are scalar ranging from 0 to
1, Accuracy-3 evaluates the performance of our model better than Accuracy-2, and higher Acc-3
indicates better performance.

We can see from the result that as we increase the length of embedding vectors and the depth of
the network, the performance of our model is enhanced greatly. Since in this experiment, the only
implicit information considered in the training phase is the influence of the tweets (represented by
resistance of users), We can also conclude that MLP module has a better performance combined
with RBMF due to collaborative subscription information in MF.

5.3 PERFORMANCE OF RBMF+MLP

We test 3 versions of our method,

• ReTrend: Original version of our method.

• ReTrend w/o Resistance Matrix: Remove the Resistance Matrix of our framework.

• ReTrend + MLP Module: Replace MF of Resistance Matrix with MLP module.

The results are shown in Figure 13

Figure 13: Performance of Our Method
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6 CONCLUSION

Social networks have provided an unprecedentedly flexible platform for information diffusion, and
the systematic operation of social network essentially depends on the latent pattern of information
diffusion. The mastery of this pattern will bring immense value to people.

In this paper, we proposed a Retweet-Tree encoding based matrix factorization method (ReTrend)
to model the information diffusion process on a microscopic level. Our work differs from extent
studies by avoiding onerous feature extraction and engineering, while overcoming the problem of
insufficient information leverage. We contrive to encode all information of an observable retweet-
tree and therefrom carry out matrix factorization to predict user retweet behavior. Then we combined
Matrix Factorization and DNN (MLP) to achieve better performance. Substantial experiments on
a real-world dataset (Twitter based) show improvements of our proposed ReTrend framework over
the state-of-the-art methods.

However, The combined our work still needs further optimization in terms of the combination of
matrix factorization and DNN(MLP). Moreover, a denser dataset of operable size is desired for our
model since the implicit information are easily shadowed by noises in sparse dataset.
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