
Speedup of Information Propagation on Blockchains

Jin Cao
515030910536

Shanghai Jiao Tong University
wanda9987@qq.com

Abstract

Blockchain is one of the most popular field due to
the upsurge of Bitcoin, which is a digital currency that
relies on a network of volunteers that collectively im-
plement a replicated ledger and verify transactions. In
this paper, I will introduce some key and basic concepts
on blockchains and Bitcoin first. Then some basic meth-
ods of information propagation on blockchains will be
mentioned. After that, I will analyze how to speed up
the information propagation to avoid blockchain forks
as much as possible. Besides, since high speed usually
means high bandwidth, it is worth considering a trade-
off between speed of bandwidth.

1. Introduction

After acknowledgment of Bitcoin as a digital cryp-
tocurrency, blockchain has become a trending subject
to not only the research community but also the indus-
trial society because of the enormous application area.
The blockchain can be defined as a decentralized im-
mutable public ledger which is updated and secured in
a distributed structure among the untrusted parties. This
ledger consists of ordered blocks, which may be com-
posed of transactions like in Bitcoin or smart contracts
as in Ethereum.
Since the inception of Bitcoin in late 2008, Bitcoin has
enjoyed a rapid growth, both in value and in the number
of transactions. Its success is mostly due to innovative
use of a peer-to-peer network to implement all aspects
of a currencies life cycle, from creation to its transfer
between users. It goes beyond the scope of cash, al-
lowing truly global transactions, processed at the same
speed as local ones[1]. It offers a public transaction his-
tory and it introduces many new and innovative uses
such as smart properties, micropayments, contracts and
escrow transactions for dispute mediation.
The main problem Bitcoin sets out to solve is the dis-
tributed tracking and validation of transactions. For

this, the network needs to reach a consensus about the
balances of the accounts it tracks and which transac-
tions are valid. Bitcoin achieves this goal with guaran-
tees which are best described as eventual consistency:
the various replicas may be temporarily inconsistent,
but will eventually be synchronized to reflect a common
transaction history.
As transactions are validated against the replica states,
any inconsistency introduces uncertainty about the va-
lidity of a given transaction. Furthermore, an incon-
sistency may jeopardize the security of the consensus
itself. This may facilitate an attacker that attempts to
rewrite transaction history.
In this work, I take Bitcoin as an typical example
to analyze how information is propagated in the net-
work. Sometimes, the synchronization mechanism fail-
s to synchronize the information stored in the ledger
with a non-negligible probability, which could causes a
prolonged inconsistency that goes unnoticed by a large
number of nodes and weakens defenses against attack-
ers. So it is necessary to propose some changes to the
current protocol to mitigate them. In other words, what
we need is to speed up the information propagation on
blockchains.

2. Information propagation

The Bitcoin network is a network of homogeneous
nodes. There are no coordinating roles and each node
keeps a complete replica of all the information needed
to verify the validity of incoming transactions. Each
node verifies information it receives from other nodes
independently and there is only minimal trust between
the nodes.

2.1. Network Topology

When a node joins the network it queries a num-
ber of DNS servers. These DNS servers are run by
volunteers and return a random set of bootstrap nodes
that are currently participating in the network. Once



connected, the joining node learns about other nodes
by asking their neighbors for known addresses and lis-
tening for spontaneous advertisements of new address-
es. There is no explicit way to leave the network. The
addresses of nodes that left the network linger for sev-
eral hours before the other nodes purge them from their
known addresses set. Each node attempts to keep a min-
imum number of connections p to other nodes open at
all times[4]. Should the number of open connection-
s be below p the node will randomly select an address
from its set of known addresses and attempt to establish
a connection. On the other side, incoming connection
are not closed if they result in the number of open con-
nections to be above the pool size p. The total number
of open connections is therefore likely to be higher for
nodes that also accept incoming connections.
Partitions in the connection graph are not actively de-
tected, and should they occur the partitions will contin-
ue operating independently. While this is certainly de-
sirable from a liveness point of view, the state tracked in
the partitions will diverge over time, creating two par-
allel and possibly incompatible transaction histories. It
is therefore of paramount importance that network par-
titions are detected. Such detection could be done by
tracking the observed aggregated computational power
in the network. A rapid decrease in the block finding
rate might indicate that a partition occurred.

2.2. Propagation Method

For the purpose of updating and synchronizing the
ledger replicas only transaction (tx) and block (block)
messages are relevant[2]. These messages are far more
common than any other message sent on the network
and may grow to a considerable size. In order to avoid
sending transaction and block messages to nodes that al-
ready received them from other nodes, they are not for-
warded directly. Instead their availability is announced
to the neighbors by sending them an inv message once
the transaction or block has been completely verified[3].
The inv message contains a set of transaction hashes and
block hashes that have been received by the sender and
are now available to be requested. A node, receiving
an inv message for a transaction or block that it does
not yet have locally, will issue a getdata message to the
sender of the inv message containing the hashes of the
information it needs. The actual transfer of the block or
transaction is done via individual block or tx messages.
Figure 1 visualizes the protocol flow for a single hop in
the broadcast. Node A receives a block, verifies it and
announces it to its neighbors. Node B receives the inv
message and, since it does not know about the block, it
will issue a getdata message. Upon receiving the getda-

ta message, Node A will deliver the block to Node B.
At each hop in the broadcast the message incurs in a

Figure 1. The procedure of forwarding a block message
from Node A to Node B.

propagation delay. The propagation delay is the com-
bination of transmission time and the local verification
of the block or transaction. The transmission time in-
cludes an announcement in the form of an inv message,
a request from the receiving party and a delivery. While
the inv and the getdata messages are relatively small in
size, the block message may be very large up to 500kB
at the time of writing. Before the block is announced to
the neighbors of a node, it is verified. The verification
of a block includes the verification of each transaction
in the block. Transaction verification in turn requires
random access to data stored on disks.

3. Blockchain Forks

3.1. How It Happens

Let us consider the case of a block being dis-
seminated in the network and how it may lead to a
blockchain fork that is only detected by a minority of
the nodes. Let G = (V,E) be the network’s underlying
connection graph, V being the set of all nodes and E
the set of connections between the nodes. Starting from
a single partition Ph ⊂ V containing all nodes whose
blockchain head is at height h, i.e., they do not know
any block for the next height h+1. Finding a new block
bh+1 introduces a new partition Ph+1,b which contains
the nodes that believe this block to be the head, i.e., it is
the first block for height h+1 they received. If no other
block is found, then nodes adjacent to the cut between
Ph and Ph+1,b leave Ph and join Ph+1,b until Ph is emp-
ty and the network as a whole proceeds with the new
blockchain height h+1.
On the other hand, should another block b′h+1 for height
h+ 1 be found by a node in Ph, it again introduces a



new partition Ph+1,b′ . In this case nodes from Ph will
join Ph+1,b and Ph+1,b′ concurrently until Ph is empty,
and all nodes are in one of the partitions with height
h+1.
Only nodes adjacent to the cut between Ph+1,b and
Ph+1,b′ will know both b and b′ and therefore able to de-
tect the resulting blockchain fork. Nodes that are in the
partition Ph+1,b, and not adjacent to Ph+1,b′ , will only
know b and be completely oblivious to the existence of
a conflicting block. A partition Ph+1,b could potentially
contain only a single node, in the case that the nodes
neighbors already know a conflicting block and imme-
diately stop the propagation of b.
The above also applies for transactions that are being
propagated. If two transactions that attempt to spend
the same output are propagated in the network only the
first transaction a node receives will be deemed valid,
the second transaction will be invalid according to that
node’s state and will therefore not be announced to its
neighbors.
In the case of transactions, stopping the propagation is
a reasonable trade off, that protects the network from
transaction spam, at the expense of individual users.
However, in the case of blocks, stopping the propaga-
tion is not reasonable. The blockchain forks, that are
hidden from a majority of the nodes by doing so, are
an important indicator of an ongoing unresolved incon-
sistency. As valid, but potentially conflicting blocks,
cannot be created at an arbitrary rate like transactions,
forwarding them would not create the possibility of an
attack.

3.2. Relationship between Delay and Forks

To analyze the propagation delay quantitatively,
I implemented a simple bitcoin network protocol and
connected to a large sample of virtual nodes in the net-
work. The measuring node does not relay inv messages,
blocks or transactions. Instead it tracks how transac-
tions and blocks are propagated through the network by
listening for the announcement of their availability in
the form of inv messages. Once the measuring node
receives an inv message containing the reference to a
block we know that the node which sent the announce-
ment has received and verified the block.
Figure 2 shows the normalized histogram of propaga-

tion time tb for all blocks b in the measured interval.
The normalization allows us to use this as an approxi-
mation of the probability density function of the rate at
which nodes learn about a block. The curve is pretty
fitted with Poisson distribution. The median time un-
til a node receives a block is 5.9 seconds whereas the
mean is at 10.9 seconds. The long tail of the distri-

Figure 2. The normalized histogram of times for al-
l blocks.

bution means that even after 25 seconds there still are
about 4% of nodes that have not yet received the block.
Since the final task is to reduce the number of
blockchain forks, we need to consider the relationship
between delay and forks and measure the number of
blockchain forks to judge whether the speedup method
is effective. It is easy to see that the less the propagation
time is, the less the number of blockchain forks is. So it
is useful to measure the number of blockchain forks on
the current protocol.

Figure 3. The histogram of blockchain forks from height
20,000 to 25,000 with original protocol.

I collected the blocks that have been propagated in the
network between height 20,000 and height 25,000. Fig-
ure 3 shows the histogram of blockchain forks in these
blocks. There were 72 blockchain forks in the observed
5,000 block interval, resulting in an fork rate r = 1.44%.



4. Speedup of Information Propagation

4.1. Minimize Verification

A major contributor to the propagation delay is the
time it takes a node to verify a block before announcing
it to the network. There is a strong correlation between
the size of a block and the time to verify it. As each
hop in the propagation has to verify the block before re-
laying it to its neighbors the delay is multiplied by the
length of the propagation paths.
In fact, the verification can be divided into two phases:
an initial difficulty check and a transaction validation.
The difficulty check consists of validating the proof-of-
work by hashing the received block and comparing the
hash against the current target difficulty. Additionally,
it checks that the block is not a duplicate of a recent
block and that it references a recent block as its prede-
cessor to verify that the block is not a resubmission of
an old block. The bulk of the validation is done in the
transaction validation which checks the validity of each
transaction in the block. The block can be relayed to the
neighbors, as soon as the difficulty has been checked
and before the transactions have to be verified. There-
fore the behavior of the node could be changed to send
an inv message as soon as the difficulty check is done,
instead of waiting for the considerably longer transac-
tion validation to be finished.

4.2. Pipelining Propagation

A further improvement can be achieved by imme-
diately forwarding incoming inv messages to neighbors.
The goal of this is to amortize the round-trip times be-
tween the node and its neighbors by preemptively an-
nouncing the availability of a block earlier than it ac-
tually is. The incoming getdata messages for the block
are then queued until the block has been received and
the above difficulty check has been performed, then the
block is sent to the neighbors requesting it. Unlike the
first change, this may cause some additional messages
being sent as from the hash of the block no validation
can be done. An attacker may announce an arbitrary
number of blocks without being able to provide them
when asked for it. Nodes receiving these spam an-
nounces will relay them to their neighbors. Should a n-
ode detect that one of its neighbors is announcing block-
s that it cannot provide it can switch back to the origi-
nal behavior of first verifying blocks before announcing
them. Even though nodes can be tricked into forward-
ing inv messages that it cannot provide the block for,
the impact is likely to be relatively small. Note that the
same attack is already possible by creating an arbitrary

amount of transactions and announcing them to the net-
work. As the attacking node can provide the matching
transaction, it will not be recognized as an attack.

Figure 4. The pipelining modifications speed up infor-
mation propagation.

Figure 4 shows the procedure of pipelining propagation.
Notice the verification being divided into two phases
(diff and verification) and the inv message being sent
much earlier. That is, pipelining propagation is based
on the method ”Minimize Verification”.

Figure 5. The histogram of blockchain forks with pipelin-
ing modifications

Figure 5 shows the histogram of blockchain forks with
pipelining modifications. Comparing it with the origi-
nal case shown in figure 3 an effective improvement can
be seen. There were 58 blockchain forks and the fork
rate was 1.16%, with a 19.44% improvement.



4.3. Relationship between Connectivity and
Propagation

The most influential problem is the remote distance
between the origin of a transaction or a block and the n-
odes. To minimize the distance between any two nodes I
attempted to connect to every node in the network creat-
ing a star sub-graph that is used as a central communica-
tion hub, speeding up the propagation of inv messages,
blocks and transactions. It should speed up information
propagation but also suffer higher bandwidth.

Figure 6. The histogram of blockchain forks with 500
connections open

Figure 7. The histogram of blockchain forks with 1,000
connections open

So I tried to find the relationship between them to
choose the most suitable connectivity with an accept-
able bandwidth. I increased the average number of

open connections based on pipelining protocol. Figure
6 and figure 7 shows the results with 500 connection-
s and 1,000 connections respectively(initial number is
around 32). When 500 connections open, the fork rate
is 0.94%, with a 34.72% improvement. With 1,000 con-
nections open, the fork rate is 0.80%, with a 44.44%
improvement.

Figure 8. Fork numbers and bandwidth with different
connections

To understand the relationship between fork numbers
and bandwidth better, I tried different numbers of con-
nections from 32 to 1,000, and got the result in Figure 8.
It shows that with the increase in connections number,
fork rate decreases slower and slower, and bandwidth
increases faster and faster. This indicates that we can’t
just increase the connections number and expect it to
work efficiently. We will meet the bottleneck that suf-
fers high bandwidth. When 1,000 connections open, the
bandwidth is around 31 MB/s, which is not so accept-
able for users. In this way, we may choose fewer con-
nections such as 400 to seek a fast propagation time(low
fork rate) under the limit of bandwidth.

5. Conclusion

So far we have analyzed how information in the
Bitcoin network is disseminated in order to synchro-
nize the ledger replicas. The reliance on blocks not on-
ly delays the clearing of transactions, but it also poses
a threat to the network itself. As blockchain forks are
symptomatic for an inconsistency in the ledger repli-
cas, it is important that the nodes in the network are
aware about them. However, due to information eclips-
ing, most nodes are unable to detect them.
Finally, some changes were done to the current Bitcoin
protocol that reduce the risk of a blockchain fork. The



measurements show a visible improvement and also the
bottleneck due to bandwidth. The root cause of the
problem maybe intrinsic to the way information is prop-
agated in the network. To find more efficient method
with more advanced propagation strategy will be a chal-
lenging task.

References

[1] Alqassem I, Svetinovic D. Towards Reference Architec-
ture for Cryptocurrencies: Bitcoin Architectural Analy-
sis[C]// Internet of Things. IEEE, 2015:436-443.

[2] Ersoy O, Ren Z, Erkin Z, et al. Information Propagation
on Permissionless Blockchains[J]. 2017.

[3] Turner A, Irwin A S M. Bitcoin transactions: a digital
discovery of illicit activity on the blockchain[J]. Journal
of Financial Crime, 2017:00-00.

[4] Decker C, Wattenhofer R. Information propagation in the
Bitcoin network[C]// IEEE Thirteenth International Con-
ference on Peer-To-Peer Computing. IEEE, 2013:1-10.


	Introduction
	Information propagation
	Network Topology
	Propagation Method

	Blockchain Forks
	How It Happens
	Relationship between Delay and Forks

	Speedup of Information Propagation
	Minimize Verification
	Pipelining Propagation
	Relationship between Connectivity and Propagation

	Conclusion

