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Abstract— Social behaviors and choices spread through
interactions and may lead to a cascading behavior. Under-
standing the way social cascades spread in a network is
crucial for many applications ranging from viral marketing
to political campaigns. The behavior of cascade depends
crucially on the model of cascade or social influence and the
topological structure of the social network.

In this paper we try to learn the necessary number of
initial seeds that need to be influenced in the Preferential-
Attachment model and Erdós-Rényi model. Further, we try
to attach the evolving character into the network which can
make our results more reliable. Though, there are many
different kinds of distribution model we choose the k-complex
contagion model to be our distribution model, which has been
proved to be more close to the reality. What’s more, we try
to step our work into a more general model that we cascade
the parameter k into the specific distribution.

I. INTRODUCTION
As we are in the information era and the social network

has became much larger recently. With the development
of the internet, information spread much quicker than
ever before. And human activity is embedded in a net-
work of social interactions, which can spread information,
beliefs, diseases, technologies, and behaviors. Therefore,
a better understanding of the social interaction and social
network behavior can help us learn how the information
diffused in the network. Also, learning all these character
in the network can help the business men or governors
find the best way to advertise their products[2], [3] or
diffuse their politics[1].

There are two important factors in determining the
scope and rate of such diffusion: the model of contagions,
i.e., how a node is influenced by its neighbors; and
the network topology. We discuss these two factors
separately.

As for the Social Contagion Models. The study of
contagions starts from the study of infectious diseases
and epidemics[4]. Soical behaviors and decisions are
“contagious” too. And there are many different kinds of
contagion model in the recent work. For example, there
are independent cascade model, linear threshold model,
k-complex contagion model and so on.

We call contagions simple when the influence gv is
submodular-that is gv(S

′ ∪{x})−gv(S
′
) ≤ gv(S∪{x})−

gv(S), if S ⊂ S
′–and call contagions complex when this

fails to hold. In a complex contagion, there could be an
initial barrier such that no activation is possible until
the barrier is crossed. If we define f(S) as the expected
number of infected nodes when the vertices in S are
chosen as the initial seeds, then if gv is submodular for
all nodes, then f is submodular as well[5].

The complex contagion model contains the monotonic-
ity and submodularity character. However, work done
on complex contagions is much more limited and so far
focused on a simplistic single threshold model called
k-complex contagion model. In k-complex contagion
model, all nodes have the same threshold k. A node
becomes infected if and only if at least k of its neighbors
have been infected. It has been shown that a k-complex
contagion is generally slower and more delicate than
simple contagion k=1[7], [8], [9].

One of the limitations of this k-complex contagion
model is the dependency on the fixed threshold k for all
nodes in the network. In practice there are people who
like to try out new things and are more risk driven while
others are risk averse. Therefore the threshold function
is not necessarily uniform. Therefore, we try to step our
work further to assume the parameter k distributed in
a specific distribution which will make the result more
reliable.

In addition to the model of cascade, the model of
network is also important. A lot of mathematical models
have been developed to capture some of the attributes
of real world social networks. A celebrated set of results
are the family of small world graphs[10], [11], [12] and
the family of graphs that produce power law degree
distribution[13], [14], [15]

In this work, we examine an evolving social network
based on the Erdős–Rényi model and Preferential At-
tachment model. The Erdős–Rényi model is a model with
some simple but useful characters. It is a classics model
in the social network theory. In the evolving Erdős–Rényi
model, nodes arrive in a sequential order. And each edge
attached to the former edge with probability p. This is an
interesting model that the later coming edge supposed
to emit more nodes. And in the Preferential Attachment
models, nodes arrive in a sequential order. Each node
chooses m edges from the nodes that arrive earlier.
When an edge is added, the neighbor is selected with
probability proportional to its current degree. This model
generates graphs with a power law degree distribution
and has been used to explain the observations in web
graphs and social networks. Therefore, we can see that
both model has some fantastic character and we can
further detect our results based on such characters.

As for our results, we first detect the evolving character
based on the Erdős–Rényi model. In this model we find
out that the character of the evolving network can help
us extend the influence of the original network, even the
later one does not bring any influence into the network.



This result matches our general sense that a network in
a critical state. A suddenly coming in man may break
this state and spread the influence to the whole network.

And for the Preferential Attachment model, we find
out that we only need to influence the h number of in
the first eh scale of network can we diffuse the influence
to the whole network. This is a more general results than
the former work who are going to influence the first k
number of nodes to influence the whole network.

Further, we extended our results into a more general
contagion model. We try to generalize the parameter k
into some distributions which will make our results closer
to the reality.

II. PRELIMINARIES
A. k-complex contagion model

We define a k-complex contagion process in an undi-
rected graph, where k=O(1). We assume that we are
given a graph G, which might have been generated by
an evolving process.

Definition 1. Given a graph G, a k-complex contagion
CC(G, k, p) is a contagion that initially infects vertices
with probability p, initial seeds, and spreads over graph
G. The contagion proceeds in rounds. At each round,
each vertex with at least k infected neighbors becomes
infected. We are interested in the necessary number of
initial nodes for all the nodes to be infected.

B. Erdős–Rényi Model
We first proceed our analysis on the Erdős–Rényi

model. It is the most useful random model and has been
used in many different kinds of works. We try to involve
the evolving character into this model which will make
our results closer to the realistic.

Definition 2. In the G(n, p0) model, a graph is con-
structed by connecting nodes randomly. Each edge is
included in the graph with probability p0 independent
from every other edge. And in the evolving model, each
node comes in sequentially. Each edge attached to the
former nodes with probability p0. Therefore, the nth node
emits np0 number of edges as expected.

C. Preferential Attachment Model
Preferential Attachment model is a model that nodes

are supposed to connect to the nodes with higher degree.
Therefore, the PA model makes the network to be
polynomial which has been proved to be the typical
character of the social network.

Definition 3. We define the independent preferential
attachment model, PAm(n): We start with a complete
graph on m+1 nodes. At each subsequent time step
t=m+2,...,n a node v arrives and adds m edges to
the existing vertices in the network. Denote the graph
containing the first n-1 nodes as Gn−1. For each new
vertex, we choose w1,w2,...,wm vertices, possibly with
repetitions from the existing vertices in the graph. For
each i,wi is selected from the set of vertices of Gn−1

with probability proportional to the vertices’ degree in
Gn−1. Then we draw edges between the new vertex and
the wi’s. Repeated wi’s cause multiple edges. Note that∑

v∈V (Gn)
deg(v) = 2mn

III. Erdős–Rényi Model

In this section, we analyze the number of nodes that
need to be infected to spread the influence to the
whole network based on the Erdős–Rényi Model. For the
discussion below, we first analyze a specific character of
the evolving Erdős–Rényi model and then we use the
Markov process and the Chernoff bound to make our
proof.

As we can see from the following figure 1, the former
network contains some infected nodes and some unin-
fected nodes. We assume that the contagion model is
the 2-complex contagion model. As we can see there are
no nodes that can be infected in the left figure, therefore,
the diffusion of the whole network stopped. However, in
the next time period, an uninfected nodes come in and
it connects to every node with probability p0. Therefore,
we can assume that the node luckily connect to the two
infected nodes and connect to another uninfected node.
Surprisingly, as we can see from the figure on the left, this
node give a “drive” to the whole network and revitalize
the whole network. Because of this node, the influence
can be diffused into the whole network. And we can call
this phenomenon as “avalanche” phenomenon.

Fig. 1. This is an illumination that an uninfected node can
revitalize the influence function in the whole network

Based on such character, we want to explore the
how the evolving character can make difference in the
diffusion of the influence.

A. Main results for Erdős–Rényi Model
We would like to first state the main theorem that

characterizes the behavior of k-complex contagion model
on the Erdős–Rényi graph G(n, p0)

Theorem 3.1. Let G(n, p0, p, t0) be the Erdős–Rényi
graph that node connects to the former node with
probability p0. And the proportion that “infected” nodes
have in the first n nodes is p. And latter it will come in
with t nodes who are not initial nodes. And our results
can be seen as follows:

if np0p + t0p0p(t0+2n+3)(t0−2)
(1−p0p)2∗2 ≥ k ∗ lnn then the

influence can be diffused to the whole network with
probability 1 − Θ( 1n ). While n → ∞, the 1

n → 0. We
can say the whole network will be influenced.



B. Proof of Theorem 3.1.
First we want to use the Markov process to portray the

“avalanche” phenomenon. We simply define the It to be
the state that whether node t has been infected. If It = 1,
we can say the node has been influenced. Otherwise if
It = 0, the node has not been influenced. And we use
Nu

t to portray that node u connects to the node t. The
k is the parameter of the k-complex contagion model.
And we assume that the node u connects to the node
t with probability q among the whole uninfected nodes.
Then our “avalanche” phenomenon can be portrayed in
the following equation:

Prob[It|Nu
t , Iu] =∑n

l=k C
u
n(p0p)

u(1− p0p)
n−u(1− (1− q)n−u)

1− (1− (1− p0p)q)n
(1)

Then we want to find the probability that Iu = 1. And
it is because the u is a general node that it can present
the whole nodes that in the first n nodes and did not
get infected. Therefore we want to prove that based on
the np0p + t0p0p(t0+2n+3)(t0−2)

(1−p0p)2∗2 ≥ k ∗ lnn all the nodes
will get infected, i.e. Prob[Iu = 1]. Therefore, we can
formulate the Prob[Iu = 1] as follows:

Prob[Iu = 1] = Prob[

n+t∑
l=1

N t
u ∗ It ≥ k]

= Prob[p0pn+

n+t0∑
h=n+1

Prob[It|N t
u, Iu] ≥ k]

(2)

And with the definition of the G(n, p0, p, t0) we can
find out that the (1 − p0p) ∗ q = p0. Therefore we can
simplify our equation in the following way:

Prob[Iu = 1]

= Prob[p0pn

+

n+t0∑
h=n+1

∑t
l=k C

u
t (p0p)

u(1− p0p)
t−u(1− (1− q)t−u)

1− (1− p0)t
]

(3)

As for the Prob[It|Nu
t , Iu] we can use the Taylor

formula (1 − p)q = 1 − pqwhilep → 0 to simplify our
results. And we can simplify the results in the following
way:

Prob[It|Nu
t , Iu] =∑t

l=k C
u
t (p0p)

u(1− p0p)
t−u−1(t− u)

t

(4)

Then we choose to unfold the binomial coefficient and
reform them into two parts and as p0p is a very small
number we ignore the two order formula of p0p and
simplify the results as follows:

Prob[It|Nu
t , Iu] =

p0p

t
[
(t+ 1)2

(1− p0p)2
− t− 1

t
]

(5)

Then we take our results into the formula of Prob[Iu =
1] then we have following formula:

Prob[Iu = 1]

= Prob[p0pn+

n+t0∑
h=n+1

(
p0p

t
[
(t+ 1)2

(1− p0p)2
− t− 1

t
) ≥ k]

= Prob[p0pn+
p0p

(1− p0p)2
∗ (t0 + 2n+ 3)(t0 − 2)

2
≥ k]

= 1− Prob[p0pn+
p0p

(1− p0p)2
∗ (t0 + 2n+ 3)(t0 − 2)

2
< k]

(6)
Then we use the chernoff bound to reform our results

and we can see that the Prob[Iu = 1] can be reformed
into the following way:

Prob[Iu = 1]

= 1− exp(t1k)

exp(t1 ∗ (p0pn+ p0p
(1−p0p)2

∗ (t0+2n+3)(t0−2)
2 )

(7)

Then we can see that once np0p+ t0p0p(t0+2n+3)(t0−2)
(1−p0p)2∗2 ≥

k ∗ lnn the Prob[Iu = 1] will be equal to 1−Θ( 1n ). Once
n → ∞ the Prob[Iu = 1] tends to 1.

IV. Preferential Attachment Model
The Preferential Attachment Model has many inter-

esting results. Take the degree of the node for example.
The [15] shows that the preferential attachment model
is a scale-free power-law distribution and this feature is
found to be a consequence of the two generic mechanisms
that networks expand continuously by the addition
of new vertices, and new vertices attach preferentially
to already well connected sites. Therefore, more and
more researchers try to detect the results based on the
Preferential Attachment Model which seems to be closer
to the reality.

Therefore, we would like to detect the evolving charac-
ter in the PA model. We try to use the Markov process
to portray every step of the diffusion of the influence
and finally find out the number of initial nodes that we
need to spread the influence to the whole network.

A. Markov chain
First we would like to give an eye to the Markov

process which will make our later illustration easier.
Assume that node u is the i − th node in the arrival

order in G. Let Vi−1 be the set of first i − 1 nodes in
G and Xi−1 be the set of infected nodes in Vi−1. If
u’s threshold is Ru = k, u is infected if and only if
among the m edges u issues, at least k of them land
in nodes in Xi−1. Now consider a specific edge of u,



we define Yi as the probability that this edge lands
in an infected node(e.g. in Xi−1). Yi depends on the
attachment rule A and the set of nodes that are infected
so far. For example, if the edges of u are preferentially
attached, i.e. with probability proportional to the current
degree of the nodes, Yi is the ratio of the infected degree
Yi =

∑
v∈Xi−1

deg(v)/
∑

w∈Vi−1
deg(w). Here deg(v) is

the total degree of each node v (counting both incoming
and outgoing edges).

Next we can compute the probability of node u being
infected when its threshold is Ru = k. For that to
happen, among the m edges of u, at least k of them
need to land on a node in Xi−1.

Prob{Infection of u|Ru = k} =

m∑
l=k

Cm
l Y l

i (1−Yi)
(m−l)

(8)
Therefore, the random process {Yt : t = m + 1, ..., n}

in SAM (n), is a Markov chain that only depends on the
previous state of the process.
B. Main result of the Preferential Attachment Model

Similar to the former pattern, we first show our main
result.

Theorem 4.1. We only need to randomly choose h
number of nodes in the first eh number of nodes that we
are going to spread our influence to the whole network.
The results can also be seen in the following figure2

Fig. 2. This is an illumination that we only need to randomly
choose h number of nodes in the first eh number of nodes.

C. Proof of Theorem 4.1.
The prove of the Theorem 4.1. can be divided into two

parts. First we would like to calculate the “avalanche”
point of the PA model. We assume that when the
proportion of the infected nodes reaches to p is the
“avalanche” point of the PA model. Then our results
can be seen in the following equation:

Prob[Iu = 1] = Prob[

n+t∑
l=1

N t
u ∗ It ≥ k]

= Prob[2mnp ≥ k]

= 1− Prob[2mnp < k]

(9)

Then we can use the chernoff inequality to reform the
equation into the following way:

1− Prob[2mnp < k] = 1− et1k

e2mnp
(10)

Therefore we find out that we only need to satisfy the
p = lnn

n that we can make the Prob[Iu] = 1−Θ( 1n ). As
n → ∞ the Prob[Iu = 1] → 1.

However, the proportion p was just what we assumed.
In the PA model, the influence may spread before it
stops. Therefore, maybe we are going to need less initial
seeds to spread our influence. Therefore, we assumed
that we need to put our initial seed into the network with
probability θ to make the network stops with proportion
p nodes get infected. We try to use the Markov chain
to do our analysis. Therefore we have the following
equation:

Yt − Yt−1 =
2mYt−1 +mpsum + γ

2tm
(11)

The psum is the probability that the edge of new node
to be the “infected” edge. And it can be shown in the
following way:

psum = θ + (

m∑
k=k0

Ck
mY k

t−1(1− Yt−1)
m−k)(1− θ) (12)

We assume the h to be the maxk0≤k≤mCk
m. Then we

can simplify the psum into the following way:

psum ≤ θ + (h ∗ Y k0
t−1 + h

Y k0
t−1

(1− Yt−1)2
−mhY k0+1

t−1 )(1− θ)

(13)

And the γ is the probability that the new node
make the former node become infected and make their
edge become “infected”. Therefore it can be seen in the
following equation:

γ =
1

2m(t− 1)

1

(k0 − 1)!
Y k0−1
t−1

t−1∑
u=1

d(u) ∗ d(u)!
(d(u)− k + 1)!

∗ [1− [d(u)− k + 1]Yt−1](1− θ)psum

(14)

d(u) is the degree of the node u and it can be calculated
in the following way:

∂d(ui)

∂t
=

d(ui)

2t

d(ui) = (
t

ti
)

1
2 ∗m

(15)

We let the I = k0−2
(k0−1)! , E = exp{((k0 − 1)− ( 12 )

k0+1
2 ∗

k0−2
k0−1 ∗ t

1
2 )Yt−1}. Then we can simplify the γ into the

following equation:

γ ≤ I ∗ E ∗ t
k0
2

t− 1
Y k0−1
t−1 (1− θ)psum (16)

Therefore the Yt − Yt−1 can be simplify into the
following way:



Yt − Yt−1 ≤ [
1

2t
+Θ((

lnt√
t
)k0)]θ + [Θ((

lnt

t
)k0) + Θ((

(lnt)2

t
3
2

)k0 ]

(17)

When k0 ≥ 3, ( lnt√
k
)k0 = o( lntt ). Then we can use the

union bound and let c = Θ(θ2). Therefore, we have the
following equation:

Prob((Yt − Y0) ≤ t) ≤ exp{− t2

2c
}

Prob(Yt − θ ≤ lnt

t
≤ exp{

−( lntt )2

2Θ(θ2)
}

(18)

As θ = o( lntt ),exp{−( lnt
t )2

2Θ(θ2) }, Yt is an increasing func-
tion. Therefore we have θ = Θ( lntt ).

While the k = 2, we have another equation to
formulate the pattern. The equation can be seen in the
follow:

E[Yt] =
2(t− 1)mYt−1 +mpsum + γ

2tm
(19)

We insert the psum and the γ into the equation and
we can reform it into the following way:

E[Yt] =
Yt−1

2m(t− 1)
θ(1− θ)[m2(t− 1)lnt− [m3(t− 1)

3
2

∗ 1

2
[1− (

1

t− 1
)

1
2 ]−m2(t− 1)lnt]Yt−1]

(20)
In order to make our results easier to read we use

A,B,C, P,Q on behalf of some equations:

A = −(
1

8

m(t− ( 12 )
1
2

t
θ(1− θ)− 1

8

m

t
θ(1− θ)− 1

4

lnt

t
θ(1− θ)

− m(m− 1)

2t
)

B =
t− 1

t
+

1

4

lnt

t
θ(1− θ)

C =
−θ

2t
P = A

Q = −4AC −B2 + 2B

4A

a1+
1

a1
=

−8AY1 + 4B

4AC −B2 + 2B

Then we have Yt to be expressed in the following way:

Yt =(
8A2

4AC −B2 + 2B
)t−1Q− 1

2
a2t−2
1

+ (
4AC −B2 + 2B

8A2
)t−1Q

− 1

2
(
1

a1
)2t−2 − B

2A

(21)

Then we have the equation:

1

2A
− (

1

8A2
)t−1 1

4A
(
1

a1
)2t−2 =

lnt

t
(22)

Therefore we can have that θ = Θ( lntt ). Therefore, the
theorem 4.1. has been proved.

V. CONCLUSIONS
Based on all the results we have made above. We

found out that the evolving character can bring lots of
interesting benefits to the results. And we believe these
results will give a further step in this area.
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