
Connectivity Determination in Heterogeneous
Random Graphs

Project Report of Mobile Internet Course

Jiaru Zhang
515030910560

Abstract— This is the report of the project of course
Mobile Internet. In this project, I studied the strategy to
determine the connectivity in random graphs. I proposed
two algorithms to deal with the global connectivity
problem and K-vertices connectivity problem, with the
method of finding smallest cut in the graphs. These two
algorithms are useful and better than original ones under
some conditions.

I. INTRODUCTION

The study on random graphs has been started long
time ago. A popolar model of random graphs is G(n, p)
random model, proposed by Gilbert in 1959 [1]. Erdos
and Renyi, gave the equivalence between G(m,n)
graph and G(n, p) model [2]. The probability of con-
nectivity on such graphs has been studied thoroughly
[3] [4].

However, there is still much to explore the strategy
on how to determine the connectivity. In these prob-
lems, the edges usually exist with some probability
p and the cost the detect is c. L. Fu studied the s-t
connectivity when p and c are constants on each edges
[5]. X. Fu generalized the problem to the condition
where p and c are variable between edges [6]. However,
the above works only focus on s− t connectivity. The
problem I focus is different with them. In this project
report, I discuss a improved algorithm of determining
the global connectivity on G(1, 0, p) random graph.
I also propose a generalized random algorithm to
determine the connectivity on K vertices rather than
all vertices.

My contributions of the problem are summarized as
two parts:
• I improved the original algorithm on determin-

ing the global connectivity of G(1, 0, p) random
graphs. It can use information repeatedly rather
than using only once. So the time complexity is
better than before.

• I generalized the random algorithm from Karger
[7] on finding the smallest cut on K vertices. So
we can determine the connectivity of K vertices
with better time complexity.

II. RELATED WORKS

Connectivity determination G(p, c) graphs are
some G(n, p) graphs where the cost to detect one edge
is a constant c. There is a efficient strategy to find a
strategy on G(p, c) graphs with the time complexity of
30log2n to judge which edge to detect [5].

Smallest cut. The algorithm of strategy to judge con-
nectivity is closely related with smallest cut problem in
a graph. A widely-known algorithm to find the global
smallest cut is proposed by M.STOER and F.WAGNER
[8]. It can find a global smallest cut definitely in
O(V 2E + V 3logV) time. Karger provided a random
algorithm to find a global smallest cut [7]. The time
complexity is O(E) with success probability of over
1
n2 . Another algorithm to find the smallest s-t cut is
proposed by L. R. Ford, Jr. and D. R. Fulkerson [9].

III. IMPROVED ALGORITHMS

A. Basic Idea

I summarized three basic algorithms to determine
connectivity in random graphs. They are shown in Al-
gorithm 1, 2 and 3 and are all based on the equivalence
property between determining which edge to detect
and finding the smallest cut many times. However,
the time complexities are too high and difficult to
meet requirements. The algorithm proposed by L.Fu
etal. [5] is an improvement of Algorithm 1. I will
show an improved algorithm of Algorithm 2 and some
discussions of Algorithm 3 in next sections.

B. Improved algorithm of Algorithm 2

The time complexity of Algorithm 2 is O(V 2E +
V 3logV), where O(V E + V 2logV) is the time com-

Algorithm 1: s-t Connectivity
Input : G(1, 0, p)
Output: 0: unconnected

1: connected

1 repeat
2 Merge all known connected vertices ;
3 Find the smallest s-t cut (Ford - Fulkson

Algorithm) ;
4 for each edge in the s-t cut do
5 Detect: if connected: turn to step 2
6 end
7 return 0 if all edges in the cut are

unconnected
8 until There is only one node in the graph;
9 return 1

Algorithm 2: Global Connectivity
Input : G(1, 0, p)

s and t
Output: 0: unconnected

1: connected

1 repeat
2 Merge all known connected vertices ;
3 Find the global smallest cut (Stoer-Wagner

Algorithm) ;
4 for each edge in the smallest cut do
5 Detect: if connected: turn to step 2
6 end
7 return 0 if all edges in the cut are

unconnected
8 until s and t are in the same super-vertex;
9 return 1

plexity of Stoer-Wanger algorithm and it runs V times
totally.

By carefully analyzing the running process of SW
algorithm, I find there is so many extra operations in
it. In each run of the algorithm, we can not only find
the global smallest cut but also some Ss, T s and their
smallest S−T cuts where Ss and T s are sets of vertices.
However, in next run the algorithm does not use this
information at all.

Here is the concrete description of the algorithm.
Concretely, we got (n1) Ss and T s in one SW algo-
rithm where S and T are both sets of vertices, and
correspond S−T cut edges weight W . In next time, the
only change between the two graphs is the mergence of

Algorithm 3: K-vertices Connectivity
Input : G(1, 0, p)

K vertices
Output: 0: unconnected

1: connected

1 repeat
2 Merge all known connected vertices ;
3 Find K-vertices smallest cut ((K − 1 times

s-t cut)) ;
4 for each edge in the smallest cut do
5 Detect: if connected: turn to step 2
6 end
7 return 0 if all edges in the cut are

unconnected
8 until all of K vertices are in the same

super-vertex;
9 return 1

two vertices which are in the smallest S−T cuts. And
we know some edges in the smallest S − T cut are
unconnected. So we could use them directly without
any detection.

For every known smallest S − T cut, if they are in
the same part of the last smallest S−T cut, we can first
detect all of s− t cut in them, and the merge the two
vertices set. The size of graph will decrease |s|+|T |+1.
So

O(n) = O(n− |S| − |T |+ 1)+

|S|∑
i=1

|T |∑
j=1

(
|S|
i

)(
|T |
j

)
Os−t(n− |S| − |T |+ 2)

where Os−t means the time complexity of s− t cut.
In particular, when |S| = 1 or |T | = 1,

O(n) = O(n− |T |) +
|T |∑
i=1

(
|T |
j

)
Os−t(n− |T |+ 1)

More particularly, if |S| = |T | = 1, which means we
have known a smallest s− t cut, we have

O(n) = O(n− 1)

which means we can merge s and t directly without
running S-W algorithm in the most ideal situation.

C. An improved random algorithm for K-vertices con-
nectivity

To determine the connectivity of K vertices, a natural
idea is to improve the algorithm to find smallest cut.

A natural idea of this problem is to use SW algo-
rithm to find smallest global cut between K vertices.
However, the algorithm does not keep effective even
in the condition of K = 2. Recently, the only definite
algorithm to solve the problem is to run s−t algorithm
for (K − 1) times, as shown in Algorithm 3. The total
time complexity is

O(n) = (K − 1)Os−t(n)

Here I give a random algorithm to find smallest cut
in K vertices shown in Algorithm 4 based on Karger
algorithm [7].

Algorithm 4: Random algorithm for smallest
cut of K vertices

Input : G(1, 0, p)
K vertices

Output: Smallest cut for K vertices

1 Denote set of other vertices as Snk ;
2 For ∀v ∈ Snk with Degree(v) = 1 remove v ;
3 For ∀v ∈ Snk with Degree(v) = 2 replace v

and its edges with the smaller one;
4 repeat
5 Merge two vertices
6 until all of K vertices are in two

super-vertices;
7 return smallest cut

The two operations are used to reduce the number of
vertices in the graph. The principle of them is shown
as follows.

Theorem 1 The two operations do not change the
result.

proof. If the operation 1 changes the result, it means
that the smallest cut contains the edge. However, if we
remove the edge in the cut, it is also a cut of K vertices
with smaller weights. This is a contradiction because
we known the original one is the smallest cut.

If the operation 2 changes the result, it means the
smallest cut contains another edge or both. If it contains
both, we can remove the two edges. Or we can replace
the edge with the smaller one. The new cut will also
be a cut with smaller weights. This is a contradiction
because we known the original one is the smallest cut.
�

Theorem 2 The time complexity of the algorithm is
O(E) per run.

proof. It is easy to prove. There are only E edges
in the graph so the algorithm will run for at most E
cycles. �

Theorem 3 It can find the smallest K-vertices cut
with probability of over (1

K2).
proof. Suppose there are c edges in the smallest cut

totally. So the degrees of K vertices are at least c
because if not we can use the vertex as s and the cut
will be its degree. So the total number of edges in
the graph is at least K×c

2 . This verdict holds true in
the procedure of merging because the degree of super-
vertex is the degree of the set and other vertices. In the
process we cannot choose the specific c edges because
they are smallest cut. The probability of not choosing
them is P = 1 − c

e ≥ 1 − 2
k . The number of vertices

decrease one after merging. So the probability of not
choosing all c edges in the whole procedure is

P ≥ (1− 2

k
)× (1− 2

k − 1
)× · · · × (1− 2

3
)

≥ 1

K2

�
The success rate is not high. However, if we run the

algorithm t times, the total successful rate will be

Successrate = 1− (1− 1

K2
)a

For example, if we run the algorithm K2 times, the
success rate will be 1 − 1

e . Furthermore, for K2logK
times run, the success rate can reach 1− 1

K . Considering
K is usually a large number in real problems, it is
usually an acceptable rate for real application.

IV. CONCLUSION

In this project, I have studied the problem of
optimally determining global connectivity and K-
connectivity of random networks. These algorithms
are based on a simple proposition: The equivalence
property between determining which edge to detect and
finding the smallest cut many times. Thus I derived the
two useful algorithms.

REFERENCES

[1] E. N. Gilbert, “Random graphs,” Ann. Math. Statist.,
vol. 30, no. 4, pp. 1141–1144, 12 1959. [Online]. Available:
https://doi.org/10.1214/aoms/1177706098

[2] P. Erds and A. Rnyi, “On the evolution of random graphs,”
Transactions of the American Mathematical Society, vol. 286,
no. 1, pp. 257–274, 2012.

https://doi.org/10.1214/aoms/1177706098

[3] M. D. Penrose, “The longest edge of the random minimal
spanning tree,” Annals of Applied Probability, vol. 7, no. 2,
pp. 340–361, 1997.

[4] E. N. Gilbert, “Random plane networks,” Journal of the Society
for Industrial & Applied Mathematics, vol. 9, no. 4, pp. 533–
543, 1961.

[5] L. Fu, X. Wang, and P. R. Kumar, “Are We Connected? Optimal
Determination of Source-Destination Connectivity in Random
Networks,” IEEE/ACM Transactions on Networking, vol. 25,
no. 2, pp. 751–764, 2017.

[6] X. Fu, Z. Xu, Q. Peng, L. Fu, and X. Wang, “Complexity
vs. optimality: Unraveling source-destination connection in
uncertain graphs,” in IEEE INFOCOM 2017 - IEEE Conference
on Computer Communications, 2017, pp. 1–9.

[7] D. R. Karger, “Global Min-cuts in RN C , and Other Rami
cations of a Simple Min-Cut Algorithm,” 1992.

[8] M. Stoer, “A simple min-cut algorithm,” Journal of the Acm,
vol. 44, no. 4, pp. 585–591, 1997.

[9] L. R. Ford and D. R. Fulkerson, “A suggested computation
for maximal multi-commodity network flows,” Management
Science, vol. 5, no. 1, pp. 97–101, 1958.

	Introduction
	Related Works
	Improved Algorithms
	Basic Idea
	Improved algorithm of Algorithm 2
	An improved random algorithm for K-vertices connectivity

	Conclusion
	References

