
Final Report
Influence Identification and Maximization

on Independent Cascade Model

HUANG Hongru, MENG Jingfan, WANG Xuyao

1. Introduction

Social network — modeled as a graph of relationships and interactions within a group of
individuals — plays a fundamental role as a medium for the spread of information, ideas, and
influence among its members. One of the primary phenomena that is extensively studied
in social networks is the spread of contagion, where infection starts from one or multiple
sources and spread to a larger scope of vertexes. Many interesting patterns, such as the
existence of a critical count of seeds and a sharp phase transition after which almost the
entire network is affected by infection, have been unveiled and testifies its significance not
only in network stability, epidemics and privacy protection, but also in various field of physics
and bio-informatics.

A motivating application for the study of influence spread is active propagation of valuable
information, often seen in cases of viral marketing strategies, in which a fraction of customers
are provided with free copies of a product, and the retailer desires the number of adoptions
triggered by such trials to be maximized. Here, the problem is to select a fixed number
of seed nodes that will attain maximal influence power. The problem also has important
applications beyond social graphs, such as placing sensors in water distribution networks for
detecting contamination.

Our work is mainly inspired by the framework in [1] on the optimal percolation. Its main
idea is to calculate the probability of a node belonging to the giant component in message
passing formulas, and to minimize the leading eigenvalue of the Jacobian matrix at its zero
solution to make the zero solution stable. [1] also shows that the optimal percolation problem
can be converted to finding the minimal set of immunized nodes to protect the network from
infection.

In our work, we are going to study the complementary problem of finding the minimal set

of nodes to infect as many other nodes as possible. We generally follow the framework in
[1], but with message passing formulas specific to this problem, and derivations a little more
complex than the original problem.

2. Problem Formulation

The problem of influence maximization has been extensively studied, yet we put a formal
formulation of the problem here for the completeness and understandability of our report.

The social network is modeled by a (directed) graph G with a weight pi j associated to each
edge in G. When the network is undirected, we have pi j = p ji.

The infection starts from an arbitrary set of nodes named seeds, which are infected initially
by external powers and spread to other parts of the network through links between nodes.
Each edge e = (i, j) is associated with a probability pi j for successful transmission, and the
outcomes on different edges are independent from each other. When a node becomes infected,
it maintains the infected state and can in turn infect other nodes through links. The spread
of infection stops when no node gets newly infected after all edges have been checked, and
the target to optimize is the number of infected nodes in the end.

The problem is, to find the most influential set of seeds with at most K nodes to maximize
the expected number of infected nodes after spreading. Formally, this is to find

S∗ = arg max
S:|S|≤K

∑
i∈V

ui (1)

This problem has been proved to be NP-hard by [2], and many works seeking approximate
solutions have appeared since then, such as utilizing the sub-modular property by greedily
selecting the node with maximum marginal influence. We would try to approach this problem
using the idea of collective influence, hoping to get a more efficient and effective algorithm.

The following is a list of important symbols that will be used in this report.

Table 1. List of symbols and paremeters

Symbol Description

Ai j Term (i, j) in adjacency matrix of G.
Bi j Jacobian matrix on edge (i, j) as a simplification of M in (19).
CIl(i) Collective influence of node i used as metric for seed selection.

dk Degree of node k.
Et,i j Event of node j successfully infected by i.
Eu,i j Event of node i being infected in G\ j.
Ev,i j Event of node i belonging to the giant component of IS(G)\ j.
G(V,E) Graph representation of a social network.

This is where spreading of infection happens.
i, j,k Nodes in V .
IS(G) Set of infected nodes given seed set S.
K Maximum number of nodes in seed set.
l Truncating length of local paths in CI calculation.
M Jacobian matrix of equations (11)(13) at zero solution.
ni Indicator of whether i is selected as seed.

ni = 1 if i ∈ S, and ni = 0 otherwise.
pi j Probability of successful transmission on edge (i, j).
S Set of seeds which initiates infection.
ui Probability of node i being infected.
ui j Probability of node i being infected in G\ j.

This precludes the case where i is infected by j.
vi Probability of i belonging to IS(G).

Giant component of infected nodes appear when not all vi are zero.
vi j Probability of i belonging to IS(G)\ j.

Preclude the case where i belongs to the giant component because of j.
wl The l-th order vector in power iteration.
wi j P(Ev,i j|Eu,i j).
yi j P(Ev,i j|Ēt,i j). Probability of i still belonging to giant component

even if no successful infection observed.
zi j P(Ev,i j|Ēu,i j). wi j and zi j are variables

describing the joint probability of these two events.
Γ(i) Set of neighbors of node i.
ε Accuracy parameter of estimating ui j.
λ Leading eigenvalue (spectrum radius) of M.

3. Message Passing Formula and Eigenvalue Optimization

3.1. Estimation of probability of infection

The following analysis is based on the framework in [1], which is on the optimal percola-
tion on a graph. Its main idea is to calculate the probability of a node belonging to the
giant component in message passing formulas, and to minimize the leading eigenvalue of the
Jacobian matrix at its zero solution to make this solution stable.

Now, we start by considering the possibility that one vertex belongs to the giant component
of infected nodes. Let vi denote the possibility that vertex i belong to a giant component of
infected nodes IS(G) in graph G, and vi j be that probability of considering j’s infection to i
but not considering j is a member of giant component. In other words, vi j is the probability
that i is infected in G and i belongs to the giant component in IS(G) \ j. Let ui be the
probability that i get infected in G, and ui j be that probability in G\ j.

Let ni indicate whether vertex i is selected as seed of infection: ni = 1 if vertex i is seed and
ni = 0 otherwise. First, we write the equation between ui j (message passing formulas).

ui j = ni +(1−ni)

[
1− ∏

k∈Γ(i)\ j
(1− pkiuki)

]
= 1− (1−ni) ∏

k∈Γ(i)\ j
(1− pkiuki) (2)

In this equation, pki is the success probability of transmission from k to i. Γ(i) is the set of
neighbors of i. If ni = 1, ui j is always 1, and otherwise, ui j is the probability of at least one
neighbor being infected. These probabilities are multiplied under the assumption of local
tree structure , in which the infection of neighbors are independent.

And the ui is calculated without removing j.

ui = 1− (1−ni) ∏
k∈Γ(i)

(1− pkiuki) (3)

With equations (3)(2), given seed selection n, the probability of infection of all nodes u can
be calculated by iterating(2). The solution would be a stable fixed point of these equations,
yet we do not know the exact solution.

In reality, calculating ui j using (2) may take too long to converge. Therefore, an alternative
method is required to quickly estimate ui j.

The alternative method is to search from i in the local tree structure of graph G\ j, stopping
at seed nodes or when the joint probability of successful transmission on the path from root

is less than a threshold ε . In formal expression, stop at node k when

nk = 1 or ∏
e∈p(i,k)

pe < ε

This method takes advantage of the fact that infection rarely spread through long paths on
usual conditions, so it is legitimate to only consider the local structure near i.

In the resultant tree Ti j, remove all branches not containing seed nodes as leaves. Set the
probability of infection xk to 1 for all seed leaves k. Then, recursively compute xk for all
nodes k with all children s ∈ Γ′(k) having known xs.

xk = 1− ∏
s∈Γ′(k)

(1− xs) (4)

Iterate with this formula until the infection probability of root node i is computed. The
accuracy of this estimation is guaranteed by the formula sub-linear property: if ∏e∈p(i,k) pe <

ε ,
P(Eu,i j|Eu,k j)−P(Eu,i j|Ēu,k j)< ε (5)

. That is, whether node k is infected will only have trivial influence on the probability that
node i is infected because the connection between them is too weak.

3.2. Derivation of Message Passing Formulas

After ui are calculated, we may try to write the equations of vi j under the message passing
framework. However, the joint distribution of ui j and vi j must be modeled explicitly before
this.

Let the event Eu,i j happen when node i is infected in G \ j, and Ev,i j happen when node i
belongs to the giant component of IS(G)\ j. Let wi j = P(Ev,i j|Eu,i j), and zi j = P(Ev,i j|Ēu,i j).
Then,

vi j = ui jwi j +(1−ui j)zi j (6)

The event Ev,i jEu,i j happens when i is a seed node or infected by at least one neighbor in
G\ j, and at least one neighbor except j belong to IS(G)\ i. Let Et,i j happen when node j is
infected by i, with probability P(Et,i j) = ui j pi j. Define

yi j = P(Ev,i j|Ēt,i j) =
ui j(1− pi j)wi j +(1−ui j)zi j

1−ui j pi j
(7)

as the probability i belongs to giant component in IS(G)\v given that j is not infected by i.

For all k ∈ Γ(i)\ j, let It,ki indicate whether Et,ki happens. Let set Si = {(It,ki)k : ∑k It,ki > 0}
be all possible assignments of It,ki such that node i is infected by at least one neighbor.

ui jwi j = ni

[
1− ∏

k∈Γ(i)\ j
(1− vki)

]
+(1−ni) ∑

(It,ki)k∈Si

∏
k∈Γ(i)\ j

[
It,ki pkiuki +(1− It,ki)(1− pkiuki)

]
[

1− ∏
k∈Γ(i)\ j

(1− It,kiwki− (1− It,ki)yki)

]

= 1− ∏
k∈Γ(i)\ j

(1− vki)− (1−ui j)

[
1− ∏

k∈Γ(i)\ j
(1− yki)

]
(8)

The last equation can be interpreted as: Ev,i jEu,i j does not happen when none of the neighbors
in Γ(i) \ j belongs to IS(G) \ i, or node i is not infected in G \ j and at least one neighbor
belongs to IS(G) \ i (this condition ensures that the 2 alternatives are mutually exclusive).
Or by the following formula

∑
(Ik)k=1:n∈{0,1}n

∏
k
[Ikak +(1− Ik)bk] = ∏

k
(ak +bk) (9)

, where (Ik) corresponds to a term in the expanded summation of taking one term ak or bk

from each factor k.

Ev,i jĒu,i j happens only when i is infected directly by j, and at least one neighbor except j
belong to IS(G)\ i.

(1−ui j)zi j = p jiu ji(1−ni) ∏
k∈Γ(i)\ j

(1− pkiuki)

[
1− ∏

k∈Γ(i)\ j
(1− yki)

]

= (ui−ui j)

[
1− ∏

k∈Γ(i)\ j
(1− yki)

] (10)

vi j is calculated by combining(6)(8)(10).

vi j = 1− ∏
k∈Γ(i)\ j

(1− vki)− (1−ui j)

[
1− ∏

k∈Γ(i)\ j
(1− yki)

]
(11)

Likewise, the probability that node i is in the giant component of IS(G) is calculated without

removing j from Γ(i).

vi = 1− ∏
k∈Γ(i)

(1− vki)− (1−ui)

[
1− ∏

k∈Γ(i)
(1− yki)

]
(12)

Also we can get the formula of yi j by combining (7)(8)(10).

yi j =
1− pi j

1− pi jui j

[
1− ∏

k∈Γ(i)\ j
(1− vki)− (1−

ui− pi jui j

1− pi j
)

[
1− ∏

k∈Γ(i)\ j
(1− yki)

]]
(13)

3.3. Condition of Stable Zero Solution and Jacobian Matrix

What we care about is the emergence of giant components in IS(G), indicated by non-zero
values of vi. By (12), vi = 0 if all independent variables vi j and yi j are zero, which is also a
solution of equations (11)(13) (zero solution).

As the variables vi j and yi j depend on each other in (11)(13). It shall be computed by
iterating from a random initial value until convergence. A necessary condition of converging
to one solution is that the absolute value of leading eigenvalue of the Jacobian matrix at this
solution must be smaller than 1.

Now we will justify this observation. First, denote the independent variables as v, so the
iteration process can be regarded as evaluating v over a specific function f (v). Then the
result is assigned to v until v=f(v).

At a small neighborhood near v = ϑϑϑ , the function f can be approximated linearly by its
Jacobian matrix M, whose element is Mi j =

∂ fi
∂v j
|∀i,vi=0. For a small error vector εεε0,

f (εεε0) = Mεεε000 +o(εεε0) (14)

Repeating l times, the inner product of l-th error vector is

⟨εεε l|εεε l⟩= (1+o(1))εεεT
0 (M

T M)lεεε0 (15)

When l→ ∞, the inner product can be approximated by power of the leading eigenvalue of
M. If the leading eigenvalue λ < 1

lim
l→∞
⟨εεε l|εεε l⟩= lim

l→∞
εεεT

0 (M
T M)lεεε0 = lim

l→∞
λ 2l⟨εεε0|εεε0⟩= 0 (16)

After enough rounds of iterations, the error vector εεε will eventually come to 0. Therefore,
the zero solution of function f (v) is stable.

If the leading eigenvalue λ > 1, when M is decomposed in its Jordan canonical form, its Jor-
dan matrix J contain elements with value λ > 1 on the diagonal. These diagonal elements
will become λ l in Jl and will diverge when l→ ∞. In this case, ⟨εεε l|εεε l⟩ will increase contin-
uously until εεε l leaves the neighborhood in which the derivative is taken to approximate f .
As a result, εεε will not approach ϑϑϑ but will end up in another stable solution.

As a conclusion, the solution ϑϑϑ is stable as long as λ < 1, such that any set of independent
variables v will eventually come to ϑϑϑ after iteration. It is otherwise unstable when λ > 1,
and this is when a small fraction of seed nodes becomes able to set up a round of outbreak
to activate the entire network until the giant component of infected nodes emerge.

Inspired by this condition, we now calculate partial derivative of functions (11)(13) at point
∀i, j,vi j = yi j = 0 and denote this matrix for i j as Bi j.(∂vi j

∂vki

∂vi j
∂yki

∂yi j
∂vki

∂yi j
∂yki

)∣∣∣∣∣
∀i, j,vi j=yi j=0

=

(
1 −(1−ui j)

1−pi j
1−pi jui j

−1−pi j−ui+pi jui j
1−pi jui j

)
= Bi j

i f k ∈ Γ(i)\ j else

(
0 0
0 0

) (17)

Now, we arrange all independent variables as a column vector w = (wi j, · · ·)T , where wi j =

(vi j,yi j)
T . The Jacobian matrix at zero input w = ϑϑϑ is

M =

(
Mkli j · · ·

... . . .

)
(18)

Each block Mkli j is
Mkli j = Ai jAklδil(1−δk j)Bi j (19)

, where Ai j is the term in adjacency matrix between nodes i and j, and δi j = 1 i f i =
j else 0.

The equation (19) is the same as (35) in [1] except that it is a matrix rather than scalar.

3.4. Calculation of Power Method and Definition of Collective Influence

As is shown in (16), the solution w = ϑϑϑ is stable only if the leading eigenvalue of M is less
than 1. As is in [1], let us compute this leading eigenvalue by power method.

Start with one vector |w0⟩= ((δi j,−δi j), · · ·)T , the first order right vector is

|w1⟩i j = ∑
kl

Mi jkl|w0⟩kl = Ai j ∑
jk,k ̸=i

A jkB jk⃗v (20)

, where v⃗ = (1,−1)T .

The first order left vector is

⟨w1|i j = ∑
kl
⟨w0|klMkli j = Ai j(di−1)⃗vT Bi j (21)

The first order inner product is

⟨w1|w1⟩= ∑
i j

Ai j(di−1)⃗vT Bi j

(
∑

jk,k ̸=i
A jkB jk

)
v⃗ (22)

By generalized power method in [1](30)(54), the leading eigenvalue λ can be approximated
by truncating the following equation at a certain number of iterations l.

λ = lim
l→∞

[
⟨wl|wl⟩
⟨w0|w0⟩

] 1
l

(23)

The structure of the inner product ⟨w0|Ml|w0⟩ at the numerator is determined by the non-
traceback property [1](13) of Jacobian matrix M, which means that Mi jkl is nonzero only if
there are edges between i j,kl, and j = k, i ̸= l. This corresponds to a flow of information
from source node i via j to a different node l. The power of M take account of all such paths
concatenated tail by head.

The flow cannot track back immediately after it travels through an edge. However, the
restriction is lifted after it has accessed another node. Actually, a flow can return to a
previously accessed node and trace back or pass through the same edge over and over again.

Fortunately, these complex interactions only contribute to a small fraction of the inner
product. By [1], for a sparse network with local tree structure, all the contributions of paths
containing cycles can be bounded to a o(1) fraction of the sum for fixed l. When calculating
the inner product, we only have to consider simple paths with length l.

Now we would derive a closed form expression of ⟨w0|Ml|w0⟩ by induction. Suppose the l-th
order right vector has the form

|wl⟩i j = Ai j ∑
k:d(j,k)=l,i/∈p(j,k)

(
∏

e∈p(j,k)
Be

)
v⃗ (24)

, where d(i, j) is the distance between i and j, and p(i, j) is the shortest path between them.
(20) is a special case when l = 1.

Then |wl+1⟩= M|wl⟩, and we neglect all paths that form cycles.

|wl+1⟩i j = ∑
kl

Mi jkl|wl⟩kl = Ai j ∑
k:d(j,k)=l+1,i/∈p(j,k)

(
∏

e∈p(j,k)
Be

)
v⃗ (25)

Similarly, we can get the expression for the l-th order left vector.

⟨wl|i j = ∑
k:d(k,i)=l−1, j/∈p(k,i)

(dk−1)⃗vT

(
∏

e∈p(k,i)
Be

)
Bi j (26)

Therefore, when computing the inner product, all simple paths having l− 1 edges before i
and l edges after j are considered. We rename the start point of the concatenated path by i
and the end point by j.

⟨wl|wl⟩= ∑
i
(di−1) ∑

j:d(i, j)=2l
v⃗T

(
∏

e∈p(i, j)
Be

)
v⃗ (27)

, and

Actually, we may slightly alter the form of (23) so that the left vector and right vector are
of different order and the power method will still converge to the leading eigenvalue. In this
way, the length of the path in (27) can also be generalized to be odd numbers.

Then we would like to define the l-th order approximation of collective influence of each node
in a similar manner as in [1](104)

CIl(i) = (di−1) ∑
j:d(i, j)=l

v⃗T

(
∏

e∈p(i, j)
Be

)
v⃗ (28)

To maximize λ with the least number of seeds, it is advisable to select nodes with greatest
CI value.

By (23), as ⟨w0|w0⟩= m, where m is the number of edges in G. λ > 1 as long as

⟨wl|wl⟩> m (29)

3.5. Procedure of Seed Selection

Based on all the discussion above, now we would propose our algorithm for seed selection.
This algorithm is a variant of collective influence in [1] tuned for independent cascade spread-
ing models. We temporarily name it Collective Influence for Independent Cascade (CIIC).

Algorithm 1: Collective Influence algorithm for seed selection on Independent Cascade
model. (CIIC)
Input: A graph G(V,E) that models the social network, probability of infection spreading

on each edge pi j, truncating length l of CI computation, ui j estimation accuracy ε ,
maximum number of seed nodes K = n being number of nodes in network by
default;

Output: A set of nodes S that should be enough to initiate an outbreak (or maximize
influence within K nodes).

1 S←∅;
2 while |S|< K and ⟨wl|wl⟩< m do
3 Calculate the probability of infection ui j, ui for each pair of nodes given seed set S by

(4) ;
4 Calculate the partial derivative matrix Bi j for ∀i, j by (17) and then calculate the

collective influence CIl(i) for ∀i by (28) ;
5 Select the node v /∈ S with highest score of collective influence, and add it to S.

S← S∪{argmax
v/∈S

CIl(v)}

6 end
7 return S.

3.6. Complexity Analysis of Our Algorithm

The time complexity of our algorithm is O(Kn).

The outer cycle will repeat for K times. When l and ε are fixed and pi j < 1, the computation
of ui j and CIl(i) is only based on a local region in the graph within a fixed radius. This region
only contain O(1) number of nodes when the degrees are bounded in G. Therefore, it takes
O(n) time to calculate ui j, Bi j, as well as CIl(i).

As only one node is selected as seed in each round. Only the variables that is affected by this
addition need to be updated. When all variables are calculated locally, all these variables
to update lie in a neighborhood of the newly selected seed. Running time could be further
saved in this way.

The space complexity is O(m). The variables that need to be stored are ui j, ui, S, Bi j, and
CIl(i). Storing all these variables only require memory space that is the same order as storing
the graph G.

4. Validation by Experiments

We implement and validate our algorithm on Python based on a well-known libray networkx.
We compare our algorithm with some common baseline algorithms on random graph and
a practical network. The result shows that our algorithm can achieve better information
spreading than those baseline algorithms. Section 4.1 will briefly introduce baseline algo-
rithms and their implementation. In section 4.2 we introduce the optimization of CI and
our algorihtm. Section 4.3 will show the result and analysis of the simulation experiment on
random graph. The source code is available on Github1.

4.1. Baseline Algorithms

High-Degree(HD) HD method ranks nodes directly according to the number of connec-
tions. In this experiment we define the influence of a node with its degree. We implement
this algorithm as select the nodes with highest degree as seeds.

PageRank PageRank algorithms extends the idea in academic citation that the number of
citations or backlinks give some approximation of a page’s importance, by not counting links
equally but normalizing by the number of links on a page. networkx provides us a function
to obtain PageRank value for each node directly and we select those with highest PageRank
vaule as seeds.

K-core The k-core is the largest subgraph where vertices have at least k interconnections.
The k-knore may be obtained in the following way. Remove from a graph all vertices of degree
less than k. Some of the rest vertices may remain with less than k edges. Then remove these
vertices, and so on until no further removal is possible. The result, if it exists, is the k-core.
In this project, we start from k = 1 to obtain a subgraph and increase k iteratively. If we
need a set of seeds with size N, the last N nodes left in the graph through this process is
what we need.

Collective Influence(CI) CI method inspects the collective influence of multiple spreaders.
This method defines CI value of a node as follows:

CIl(i) = (di−1) ∑
j∈Ball(i,l)

(∏
k∈Pl(i, j)

µkρk)(d j−1)

where di stands for the degree of node i. Ball(i, l) consists of the nodes within a ball of
radius l from node i(defined as the shortest path) and Pl(k, j) is the shortest path of length

1https://github.com/Huanghongru/EE447-Project.

l from node i to j. CI method can be considered as a naive version of our algorithm since
it doesn’t involve the probability of successful transmission on edges. We select a node with
the highest CI value as seed and remove it from the graph. Then we calculate CI value of
each node in the new graph and repeat this procedure until we obtain enough seeds.

4.2. Optimization of CI and our algorithm

Theorectically, the computation complexity of CI is O(N logN). But in fact, it still takes
much of time to pocess this algorithm. So we do some prunning when implementing CI
algorithm. Since our algorithm is quite similar to CI except for the definition of collective
influence of a node. This optimization method can also be applied to our algorithm.

The first idea is to find all the so-called ball-path of each node, which will save us a lot of
time because after removal, we don’t need to find the paths again.

The second idea is after removing a node with the highest CI value in the current graph,
we only update those nodes that are affected by the removed node. These nodes can be the
neighbor or in the ball-path of nthe removed node of the removed node.

4.3. Simulation Validation

In this section, we construct 4 different random graph as network on which we can test
the performance of our algorithm. The random graph generated by networkx follows power
law distribution, which can approximate the structure of pratical social network. The basic
information of these 4 networks are shown in the table.

Table 3. Information of random graph
Number of nodes Number of edges Average degree Max degree

G1 1000 999 1.9989 32
G2 2000 1999 1.9990 45
G3 3000 2999 1.9993 53
G4 4000 3999 1.9995 68

On each network, we compare the performance of our algorithm with the baseline methods
mentioned above. To do the simulation, we need to construct a virtual information spreading
process. We firstly define state si for node i indicating whether it is infected. We set s = 1
for all seed nodes and s = 0 for all the other nodes in the graph as the initial state. The

virtual information spreading process can mathematically describe as follows:

∀ j ∈ G−S, i ∈ S,s j = 1 if r > 1− pi, j

where r is a random variable follows uniform distribution over [0,1]. When compare the
performance of different algorithms, this procedure may cause some problems. For a edge in
the graph, the virtual information may pass successfully in HD method but fail in PageRank.
To address this unfair circumstance, we construct a sampled graph G′ using the following
method before simulation.

∀i, j ∈ G, p′i, j = 1 if r > 1− pi, j else 0

Then we perform virtual information spreading on the sampled G′ for fair comparison. The
results are shown as follows:

Figure 1. result of G1 Figure 2. result of G2

As we can see, there is no perfomance difference in these algorithms in G1 because G1 is
somewhat a small graph, which can not show the superiority of our algorithm. In the case
of G2, G3 and G4, our algorithm performs better than other baseline algorithms. Take
G3 as an example, in a small fraction of seed nodes, our algorithm perform much better
than the k-core method. It also achieve higher spread range than the CI method, which
doesn’t consider the probability of successful transimission on the edge. In our simulation
experiment, HD and PageRank have a similar performance but a little bit worse than our
algorithm.

Figure 3. result of G3 Figure 4. result of G4

5. Conclusion

We studied the influence maximization problem on independent cascade models, using the
idea of collective influence to measure the influential powers of potential seed nodes.

We start from message passing formulas specific to independent cascade model, with 2 inde-
pendent variables for each edge: one for the probability of belonging to the giant component
of infected nodes, and the other for correlation of being infected and belonging to giant
component.

The appearance of giant infected component has been related to the critical point where
zero solution of message passing formulas become unstable. This is marked by a leading
eigenvalue greater than 1. To infect as many nodes as possible, it is reasonable to select
seeds to maximize the leading eigenvalue.

We compute the leading eigenvalue by power iteration. Due to the non-traceback property
and neglecting short loops, we reach a collective influence formula that is similar in form as
that in [1]. We then propose our algorithm for selecting the most influential nodes as seeds.

We conduct a simulation experiments on random graph that follows power law distribution.
The simulation results show that with a pretty small fraction of seed nodes, our algorithm
achieve a basic superiority over the baseline algorithms.

Currently, there are still many unfinished works in this issue. Calculating the number of
seeds sufficient to initiate a giant component of infected nodes, and justifying consistency

between maximizing the number of infected nodes and maximizing the probability of having
a giant infected component are two such problems that remain unexplored.

Our algorithm also needs further improvements on reducing complexity. Calculating the
probability of infection, as well as finding the local paths, is still very time consuming,
limiting its performance and usage in large scale networks. For our algorithm to be of real
value in influence maximization, higher levels of simplification is required, and more valid
experimental data is needed to justify its performance.

6. Mission Division

Table 4. Mission Division

MENG Jingfan theory derivation
algorithm design

WANG Xuyao our algorithm implementation
experiment and analysis

HUANG Hongru baseline algorithm implementation
experiment and analysis

Note: we run simulation experiment on dozens of random graph with different charac-
ters(distribution, average degree, fractions of seeds and so on) to find out on which kind of
graph our algorithm can achieve the best. This part of work is concluded as experiment
and analysis simply, but it is quite large and tedious so it need two of our members to
complete together.

References

[1] Hernán A. Makse Flaviano Morone. “Influence maximization in complex networks through
optimal percolation”. In: Nature 524 (), p. 65. url: http://dx.doi.org/10.1038/
nature14604 (cit. on pp. 1, 2, 4, 8–10, 15).

[2] Éva Tardos David Kempe Jon Kleinberg, ed. Maximizing the Spread of Influence through
a Social Network. Proceedings of the ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. 2003. doi: 10.1145/956750.956769 (cit. on p. 2).

