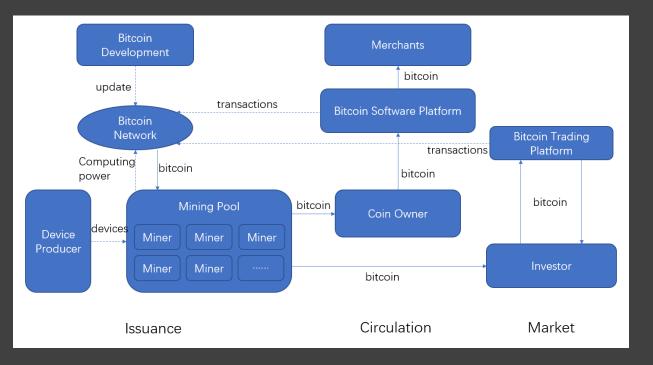
Detection and Visualization of Bitcoin Anomaly

SUIBIN SUN 2018 5 26

Contents

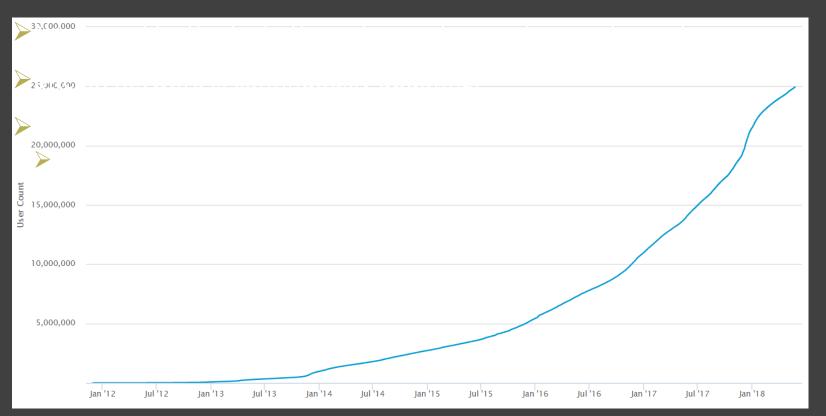
>Introduction

> Methods


- ➢ Data collection
- >Unsupervised learning
- ➢Online learning
- ➢ Visualization
- Result and evaluation
 - Unsupervised learning
 - ➢Online learning
 - ➢ Visualization

➢ References

Introduction


>What is Bitcoin?

- ➤The first decentralized cryptocurrency.
- Based on blockchain (distributed database system).
- Using consensus mechanism(PoW) to keep correctness.
- A wallet address represent an account.

Introduction

>Number of Bitcoin users is growing rapidly.

Methods – Data Collection

>All blocks are available on Internet.

Totally 522137 blocks until May 18 2018.
 Take 0.4MB as an average size, totally ~200GB!
 Here I download block height 300000~522137.
 Each block record thousands of transactions.
 Extract useful data in transactions.

- Useful data in a transaction:
 - ►In-degree
 - ➢Out-degree
 - Total fee of this transaction

LATE	LATEST BLOCKS SEE MORE								
Heig	nt	Age	Transactions	Total Sent	Relayed By	Size (kB)	Weight (kWU)		
5244	91	11 minutes	2605	5,240.58 BTC	AntPool	1,129.13	3,886.51		
5244	90	17 minutes	2631	13,791.40 BTC	BTC.com	1,166.2	3,992.8		
5244	89	52 minutes	852	2,972.44 BTC	AntPool	346.55	1,208.08		
5244	88	59 minutes	988	3,435.38 BTC	F2Pool	523.93	1,799.08		

🗎 316655.	json⊠	
1	₽{	
2 3	日{	"blocks": [
3	Ę.	{
4		"hash": "0000000000000002cb22c67fe282f0dd291be895f6116f03ddd187fd9c673d1",
5		" <u>wen</u> ": 2,
6		"prev_block": "000000000000000000d2baa0845578baffc77b0c652944a353e739751fd8fd190",
7		"mrkl_root": "6d283d0ccd4b095fa72ed685ca0490db2feaa7d8db58ec5789f64c56c3e73cc3",
8		"time": 1408554158,
9		"bits": 405675096,
10		"fee": 2075892,
11		"nonce": 2929112609,
12		"n_tx": 148,
13		"size": 130499,
14		"block_index": 458084,
15		"main_chain": true,
16		"height": 316655, 000 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17		"received_time": 1408554158, Thousands of transactions here
18		"relayed_by": "46.253.195.50",
19	= _	"tx": [
16283	-	}
16284]
16285	L}	

An example block #316655

Methods – Unsupervised Learning

➢ Feature extraction

- ➢In-degree
- ➢Out-degree
- ➤Total fee

An example transaction with 5 in-degree, 2 out-degree and 1.91151425 BTC total fee

Methods – K-means

>A classic unsupervised method of clustering

Given $(x_1, ..., x_m)$ where $x_i \in R^3$, find k clusters $S_1, ..., S_k$ to solve: $\min_{S} \sum_{i=1}^k \sum_{x \in S_i} ||x - \mu_i||^2$

where μ_i is the centroid point of S_i .

Methods – K-means

 \succ How to decide k?

Calinski Harabaz Index: an efficient strategy to decide which k works better.

$$\max_{k} S(k) = \frac{tr(B_k)(m-k)}{tr(W_k)(k-1)}$$

where B_k , W_k are the covariance matrix of two different cluster centroids and the covariance matrix of two inner cluster data points.

 $\succ S(k)$ is greater, k is better.

Methods – K-means

Detection principle-whether this point is abnormal?

> Mahalanobis distance based method:

Assuming the data points drawn from multivariate normal distribution.

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)\right)$$

where μ, σ can be estimated by

$$\hat{\mu} = \frac{1}{m} \sum_{i=1}^{m} x_i, \hat{\Sigma} = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu)(x_i - \mu)^T$$

Methods – Online Learning

Bitcoin network is continuously updating, how to update our model respectively?

Bayesian Probit Regression(BPR)

Suppose the weights of weights *w* meet Independent Gaussian Distribution.

$$p(w) = N(w|\mu, \Sigma)$$

$$p(y|w) = N(y|x^Tw, \beta) = N(y|x^T\mu, x^T\Sigma x + \beta^2)$$

Since we can observe the label y of a new data Y, we can use KL distance to estimate the distribution of y and then the posterior. Finally we get:

$$p(w_{d}|y) = N(w_{d}|\widetilde{\mu_{d}}, \widetilde{\sigma_{d}})$$

$$\widetilde{\mu_{d}} = \mu_{d} + \frac{Yx_{i,d}\sigma_{d}^{2}}{\sqrt{x^{T}\Sigma x + \beta^{2}}} \nu \left(\frac{Yx^{T}\mu}{\sqrt{x^{T}\Sigma x + \beta^{2}}}\right)$$

$$\widetilde{\sigma_{d}} = \sigma_{d} \left[1 - \frac{x_{i}d\sigma_{d}^{2}}{x^{T}\Sigma x + \beta^{2}}w(Yx^{T}\mu/\sqrt{x^{T}\Sigma x + \beta^{2}})\right]$$

Methods – Online Learning

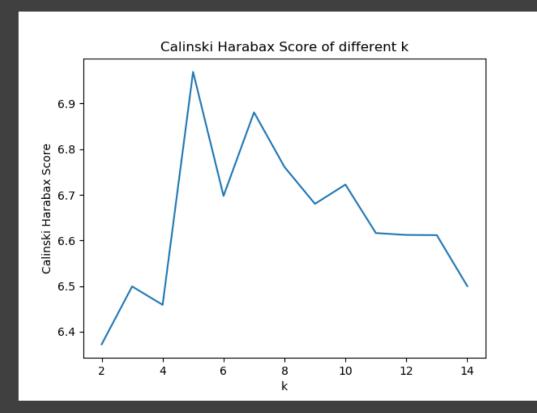
Bayesian Probit Regression(BPR)
Our update algorithm:

initialize μ₁, σ₁², μ₂, σ₂², ..., μ_D, σ_D²,
input a new data y with label Y, for d = 1, ..., D: update μ_d and σ_d by the previous formula.

Methods – Visualization

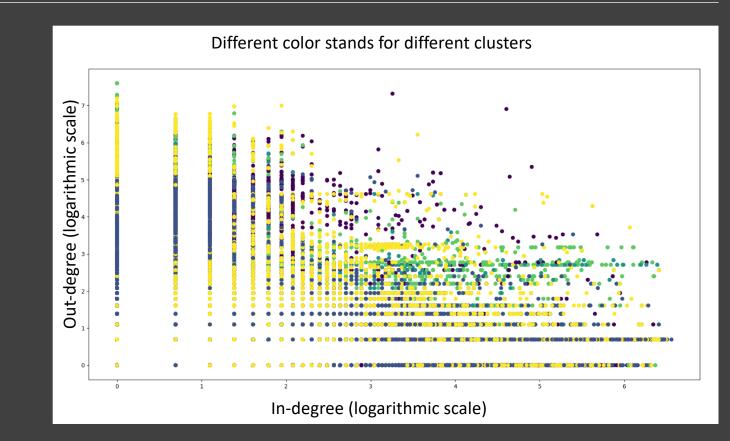
➤To show the result more intuitively, we build small web app which plot the realtime data of Bitcoin network.

>Including:

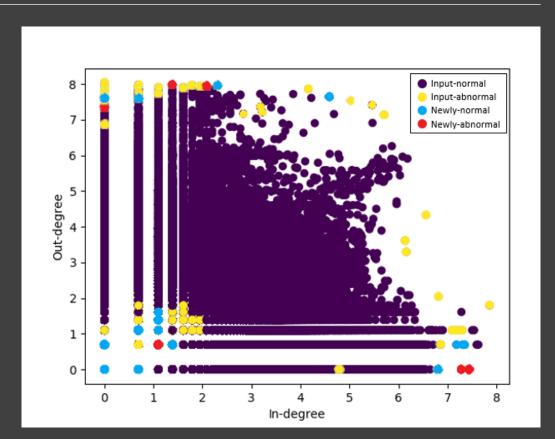

Average transaction fee recorded in a block

Difficulty of mining

>Number of transactions per day

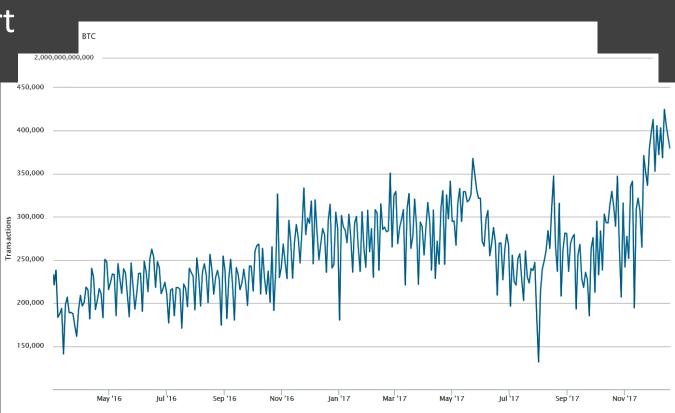

➢Using Calinski Hearbaz index to choose best k

- > K = 5, the score is the greatest
- We choose k = 5 for following experiments.



Result of k-means:
 Different color means different cluster.

3D image is too time costing and not intuitive.


- Input data
 Purple: normal
 Yellow: abnormal
 Newly added data:
 Blue: normal
 - ►Red: abnormal

Average transaction fee chart

Difficulty chart

Number of transactions per day

