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Abstract—Author name disambiguation has long
been a problem in bibliography websites. In AceMap,
a hierarchical clustering method is originally used to
tackle this problem. Although the method achieves
decent performance, it has several drawbacks. In this
artical we present a method based on spectral clus-
tering that achieves similar accuracy but requires less
computational resources.

I. Introduction
AceMap is a academic map that collects scholars’ infor-

mation for indexing and querying. It uses network spiders
to retrieve information from the internet, usually in the
format of plain text, then further processes the information
to construct a dataset that’s suitable for querying. With
the development of the system, the AceMap group has
accumulated a relatively large amount of data. However,
one major problem faced when processing the data is
that there could be different people sharing the same
name. Had two people been treated as the same person
simply because their names are identical, the reliability
and correctness of the database would be harmed greately.
Author name disambiguation aims to solve this problem.

The disambiguation process aims to tell if articles, of
which one or more authors have identical names, are
published by the same person, with the aid of additional
information about the publications. Typically, there are
two major types of methods to achieve this goal: au-
thor grouping methods and author assignment methods.
Author grouping methods use clustering algorithms to
classify publications, while author assignment methods try
to assign publications to known authors. In this paper, the
focus is primarily on author grouping methods.

Originally, the method used in AceMap is based on
hierarchical clustering. Although it achieves a relatively
high accuracy, it has several drawbacks such as being
too slow on large datasets, being too complicated, and
relying on a large number of handcrafted parameters. The
proposed method is largely free of such drawbacks at the
cost of reduced accuracy. The two methods are compared
in detail in section VI: experiments.

II. Problem Formulation
Given a set of n publications P = {p1, p2, . . . , pn}, the

goal is to partition them into k sets S = {P1, P2, . . . , Pk}

such that P1 ∪P2 ∪ · · · ∪Pk = P and Pi ∩Pj = ∅ if i ̸= j,
where each set contains the publications of and only of one
author.

A publication contains information about an document.
Ferreira et al. [2] classify the information into the following
three categories: citation infrmation, which are attributes
directly extracted from the publications such as title,
author names, year, and so on; web information, which
are retrieved from the Internet, usually by searching on
search engines; and implicit evidence, which are implicit
attributes inferred from visible ones. Combined usage of
multiple types of attributes can greatly help the disam-
biguation process and improve accuracy.

III. Related Works

In [2], current methods are categorized into two classes:
author grouping methods and author assignment methods.

A. Author Grouping Methods
In author grouping methods, a clustering method is

used to classify each publication. Han et al. [3] represents
each publication as a feature vector before using K-way
spectral clustering with QR decomposition [10] to cluster
the publications. The number of clusters needs to be
informed in this method.

B. Author Assignment Methods
In author assignment methods, a model of each author

is constructed, and each publication is directly assigned to
an author. Such methods can be further divided into two
types: classification and clustering.

1) Classification: A supervised machine learning tech-
nique is used to assign publications to authors. In [8],
Veloso et al. proposed a disambiguation method that uses
a supervised rule-based associative classifier for author
assignment.

2) Clustering: Such methods optimizes the fit between
a set of publications and some mathematical model used
to represent that author. In [7], Tang et al. proposed a
probabilitic framework based on Hidden Markov Random
Models (HMRF) for this problem.



IV. Method Previously Used in AceMap
The method previously used in AceMap is based on

hierarchical clustering, as illustrated in Algorithm 1. The
algorithm models the publications and the relationships
between them as a heterograph, in which the nodes
are publications, and edges between them are split into
two classes, strong edges and weak edges, based on the
affiliation, published venue, and author names of two
publications. More specifically, if two of these attributes
(author names are counted separately, and the name of
the target author is excluded) are the same, then a strong
edge is established between two nodes. If only one of these
attributes of the two publications are the same, a weak
edge is established instead. The algorithm first merges
all papers that have strong connections between them,
then uses hierarchical clustering to further cluster the
publications according to the similarity matrix. Finally,
the algorithm tries to merge scattered publications, i.e.,
publications that are the only elements in their clusters,
into other larger clusters.

A. Building the Similarity Matrix
After computing all weak edges, it is easy to obtain

the types of these edges that indicate which attributes of
two publications are the same. Since all node connected
by strong edges have already been merged into clusters,
there may exist multiple weak edges of different types
between two clusters. A weight is assigned to each edge
based on its type and the similarity between the titles
of the two publications it connects, then the Dijkstra
algorithm is used to find the shortest distance between
every two clusters. Specifically, for each cluster c and all
its neighbors to which it’s connected by an edge of type t,
the shortest path algorithm tries to find a path to each
neighbor that consists of no edges of type t, therefore
finding two types of links between the two clusters. After
computing the shortest distances between every two clus-
ters for each link type, these distances are then assigned
to each pair of nodes that are connected by a weak edge
of the corresponding type and are not in the same cluster.

B. Hierarchical Clustering
After the similarity matrix has been computed, the

hierarchical clustering process tries to further cluster the
nodes by repeatedly merging the two nodes that are not in
the same cluster and are connected by the shortest edge.
In the original implementation, however, the node pairs
are further examined to make sure that the two clusters
don’t have conflicts with one another. The conditions
are controlled by constants K1, K2, and K3. Firstly,
the total number of weak edges that connect the two
clusters must be greater than K1 times the product of
the two clusters’ cardinalities. Secondly, The total number
of different affiliations of the combined cluster must not
exceed K2, limiting the number of places that one may
have worked at. Finally, let Y be the set of all papers

published in the same year, then the number of different
affiliations of these papers must not exceed K3. This limits
the frequency one changes to work at different places. In
the original implementation, K1 = 0.01, K2 = 20, and
K3 = 3.

C. Merging Scattered Publications

During this phase, the algorithm tries to merge clusters
that have only one publication in each of them with larger
clusters based primarily on the similarity between their
titles. This process is controlled by K4, K5, and K6.
For each scattered paper, the algorithm iterates through
all other papers in descending order of the similarities
between their titles, trying to merge the paper with each
of them. For two papers whose titles’ similarity is s, they
are not merged if s < K4, or if s < K5 when the two
papers are neighbors. Suppose the other paper belongs
to cluster c, then the two clusters are not merged if the
number of elements in c is smaller than K6. Finally, a
relaxed version of conflict checking in the hierarchical
clustering phase is used to ensure that the scattered paper
doesn’t conflict with any paper in the other cluster. The
first part of conflict checking is ignored in this phase, so
there’s no requirements of the number of edges between
the two clusters. In the original implementation, K4 = 0.8,
K5 = 0.6, and K6 = 5.

V. Spectral Clustering

Donath and Hoffman [1] first suggested constructing
graph partitions based on eigenvectors of the adjacency
matrix. The spectral clustering algorithm was then discov-
ered, re-discovered, and extended many times in different
communities [6]. In 2000, Shi and Malik [5] proposed
normalized spectral clustering and sparked its popularity
in the machine learning community.

The spectral clustering algorithm aims to find a parti-
tion of a similarity graph such that edges between two
different groups have small weights while edges within
a group has large weights. Given a set of data points
x1, . . . , xn and a similarity metric s(x1, x2) ≥ 0, the
similarity graph G = (V,E) represents the data based on
the similarities between data points, in which two vertices
x1 and x2 are connected if s(x1, x2) is larger than zero or
a certain threshold. The edge between two connected ver-
tices is weighted also by s(x1, x2). The weighted adjacency
matrix of the graph is the matrix W = (wij)i,j=1,...,n,
where wij = wji. If wij = 0, then the vertices vi and vj
are not connected. The degree of a vertex v ∈ V is defined
as

di =

n∑
j=1

wij ,

and the degree matrix D is defined as the diagonal matrix
with the degrees d1, . . . , dn on its diagonal. Two major



Algorithm 1: Disambiguation-AceMap
Data: The set of publications P , and parameters

K1, . . . ,K6

Result: The set of clusters C

1 Procedure Shortest-Path(t, C, s)
2 foreach c ∈ C do
3 Dist[c]←∞;
4 Dist[s]← 0;
5 Compute the weights of all edges based on their

types and the similarities between the titles of
the two publications that an edge connects;

6 Use Dijkstra algorithm to find the shortest path
from s to every other cluser, taking into
consideration only edges whose types are not t,
and store the shortest distances in Dist;

7 return Dist;

8 Procedure Neighbors(C, ClusterEdge, n)
9 S ← {};

10 foreach {c1, c2, t} ∈ ClusterEdge do
11 if c1 = n then
12 S[t]← S[t] ∪ {c2};
13 else if c2 = n then
14 S[t]← S[t] ∪ {c1};

15 return S;

16 Procedure No-Conflict(c1, c2, NodeWeights,
strict)

17 if strict then
18 N ← 0;
19 foreach {p1, p2, w} ∈ NodeWeights do
20 if p1 ∈ c1 and p2 ∈ c2 then
21 N ← N + 1;

22 if N < K1 · |c1| · |c2| then
23 return False;

24 A1 ← {Affiliation[p] | p ∈ c1};
25 A2 ← {Affiliation[p] | p ∈ c2};
26 if |A1 ∪A2| > K2 then
27 return False;
28 foreach y ∈ {Year[p] | p ∈ c1 ∪ c2} do
29 Y1 ← {p | p ∈ c1,Year[p] = y};
30 Y2 ← {p | p ∈ c2,Year[p] = y};
31 if |Y1 ∪ Y2| > K3 then
32 return False;

33 return True;

34 C ← {{p} | p ∈ P};
35 foreach {p1, p2} ⊂ P , where p1 ̸= p2 do
36 Faff ← Affiliation[p1] = Affiliation[p2];
37 Fvenue ← Venue[p1] = Venue[p2];
38 Nco-auth ← |Authors[p1] ∩Authors[p2]| − 1;
39 S ← Nco-auth + Faff + Fvenue;
40 if S ≥ 2 then
41 Merge(Cluster-Of(p1), Cluster-Of(p2));
42 else
43 NodeEdge[p1][p2]← Source(S);

44 foreach {p1, p2, t} ∈ NodeEdge do
45 c1 ← Cluster-Of(p1);
46 c2 ← Cluster-Of(p2);
47 if c1 ̸= c2 then
48 Add(ClusterEdge[c1][c2][t], {p1, p2});

49 foreach c ∈ C do
50 foreach {t, C ′} ∈ Neighbors(C, ClusterEdge,

c) do
51 Dist← Shortest-Path(t, C, c);
52 foreach c′ ∈ C ′ do
53 if c′ ̸= c and Dist[c′] ̸=∞ then
54 ClusterWeights[c][c′][t]← Dist[c′];

55 foreach {p1, p2, t} ∈ NodeEdge do
56 c1 ← Cluster-Of(p1);
57 c2 ← Cluster-Of(p2);
58 NodeWeights[p1][p2]← ClusterWeights[c1][c2][t];
59 foreach {p1, p2, w} ∈ Sorted(NodeWeights) do
60 c1 ← Cluster-Of(p1);
61 c2 ← Cluster-Of(p2);
62 if No-Conflict(c1, c2, NodeWeights, True)

then
63 Merge(c1, c2);

64 foreach c ∈ C, |c| = 1 do
65 p← The element in c;
66 P ′ ← P ordered by Similarity(Title[p],

Title[p′]);
67 foreach p′ ∈ P ′ do
68 s← Similarity(Title[p], Title[p′]);
69 if s > K4 or (s > K5 and p is a neighbor of

p′) then
70 c′ ← Cluster-Of(p′);
71 if |c′| > K6 and No-Conflict(c, c′,

NodeWeights, False) then
72 Merge(c, c′);

73 return C;



types of criteria for good partitions, RatioCut and Ncut,
have objective functions are defined as

RatioCut(A1, . . . , Ak) =

k∑
i=1

cut(Ai, Ai)

|Ai|
,

Ncut(A1, . . . , Ak) =

k∑
i=1

cut(Ai, Ai)

vol(Ai)
,

where each Ai represents a partition and vol(A) is the
sum of the degrees of all vertices in the subgraph A. The
unnormalized spectral clustering algorithm seeks to min-
imize RatioCut, while the normalized spectral clustering
algorithm seeks to minimize Ncut.

Both unnormalized and normalized spectral clustering
operate according to Algorithm 2, and the only difference
is in the Laplacian() function. Specifically,

Laplacian(W) =

{
D −W unnormalized
I −D−1W normalized

As can be seen from the pseudo-code, computing the
Laplacian matrix and its eigenvalues and eigenvectors is
essentially an embedding process. The resulting vectors
are the rows of the matrix formed by combining the
eigenvectors corresponding to the k smallest eigenvalues.
The K-means algorithm is then invoked to cluster the
embedded vectors.

Algorithm 2: Spectral-Clustering
Data: The adjacency matrix W , and the number

of clusters k
Result: The labels of each node R

1 L← Laplacian(W);
2 {(λ1, t1), . . . , (λn, tn)} ←

Eigen-Values-And-Vectors(L);
3 t1, . . . , tn ← The eigenvectors in ascending order of

the eigenvalues;
4
[
p1 p2 · · · pn

]
←

[
t1 t2 · · · tk

]⊤;
5 R← K-Means(p1, p2, . . ., pn);
6 return R;

A. Usage in Author Disambiguation
In the proposed disambiguation algorithm, a similarity

graph is built before spectral clustering is used to classify
the publications. The similarity graph is built in a way
very similar to how the similarity matrix is obtained in the
original method. For every two publications, the number
of identical attributes of them are calculated as in section
IV-A, and a “strong” edge is added between any pair of
papers if two of their attributes are the same. Parameter
K1 is used to control the minimum number of outgoing
edges that a node has, and if a node has less than K1

outgoing edges after this step, more edges are added based

on the similarities of the papers’ titles. Specifically, if a
paper p has k < K1 outgoing edges, all other papers
are ordered by the similarity between the title of p and
that of the other paper. For the first K1 − k papers with
the largst similarities, they are linked with p with either
a “weak” edge if there’s an attribute that’s the same
between the two papers, or otherwise a “disconnected”
edge. An alternate strategy is to only consider papers
with similarities larger than a threshold, but in practice it
produces less accurate results. After the edges are added,
the similarity matrix is generated, of which each element
is the corresponding edge’s weight. A “strong” edge always
has weight 1, while “weak” edges and “disconnected” edges
have weights K2 and K3, respectively. The similarity ma-
trix is then used for unnormalized spectral clustering. In
the implementation, K1 = 5, K2 = 0.3, and K3 = 0.1. See
Algorithm 3 for the pseudocode for building the similarity
graph.

Algorithm 3: Generate-Similarity-Graph
Data: The set of publications P , and the

parameters K1, K2, and K3

Result: The similarity matrix W

1 N ← |P |;
2 W ← [0]N×N ;
3 foreach p ∈ P do
4 T ← {};
5 foreach p′ ∈ P do
6 Faff ← Affiliation[p] = Affiliation[p′];
7 Fvenue ← Venue[p] = Venue[p′];
8 Nco-auth ← |Authors[p] ∩Authors[p′]| − 1;
9 S ← Nco-auth + Faff + Fvenue;

10 if S > 1 then
11 W [p][p′]← 1;
12 else
13 T ← T ∪ {p′};

14 k ← Num-Neighbors(p);
15 if k < K1 then
16 P ′ ← P sorted descending by the

similarities of titles, taking only the first
K1 − k elements;

17 foreach p′ ∈ P ′ do
18 if p′ ∈ T then
19 W [p][p′]← K2;
20 else
21 W [p][p′]← K3;

22 return 1
2

(
W +W⊤);

VI. Experiments
In the experiments, the AMiner disambiguation

dataset [9] is used. The dataset provides the title, author
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Fig. 1. Comparing the performance of the two methods

names, year, publication venue title, and the target au-
thor’s affiliation, of each publication.

A. Performance
The accuracy and running time of the two algorithms

are compared in Fig. 1. As can be seen from the figure,
spectral clustering has higher precision but lower recall,
resulting in a F1 score similar to the original method. How-
ever, the proposed method reduces the computing time by
approximately 40%, and therefore is more efficient. Dur-
ing the experiments, it was observed that unnormalized
spectral clustering performs far better than normalized
spectral clustering, and adding thresholds to similarities
is usually a detriment to the performance as well.

B. Randomness
An interesting trait of the K-means algorithm is that

for different initial centroids (“seeds”), the algorithm may
converge at different local minimums. A useful metric
for evaluating the results of the algorithm is the sum of
distances between each data point and the centroid of the
cluster it belongs to. In the second experiment, the K-
means algorithm is ran a large number of times on the
same embedding with different seeds, and the accuracy
is calculated for each result. The results shows that,
unfortunately, the sum of distances is not very useful for
obtaining a better result since there’s very little correlation
between the sum of distances and accuracy, as depicted in
Fig. 2.

C. Embedding
As mentioned before, the proposed algorithm obtains

an embedding of the data points. In Fig. 3, PCA [4] is
used to lower the dimensionality of the embedding for
visualization, and data points are colored according to
the clusters they belong to. As can be seen in the figure,
although the embedding yields decent clustering results,
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it’s not suitable for visualization when processed with
PCA.

VII. Comparison of the Two Methods

The spectral clustering algorithm achieves an accuracy
similar to that of the previous method based on hierarchi-
cal clustering, but requires less running time. It had higher
precision but lower recall in the experiments, and was also
observed to tend to generate clusters whose sizes are more
balanced. The proposed method is also much simpler and
requires less handcrafted parameters. While the original
method is a deterministic method that’s bound to return
the same result for the same input, the proposed method
can return different results due to the randomly generated
seeds in the K-means algorithm, which can be both a
blessing and a curse. Due to this characteristic, one can
run the algorithm multiple times in the hope of obtaining
a better result, but unfortunately no good metric is found



yet that can evaluate a partition without ground truth
labels. Finally, the proposed method can also be used to
obtain an embedding of the publications.

One major disadvantage of the method is that it requires
that the number of clusters be known before clustering.
Although it can also be determined by maximizing the
eigengap |λk+1−λk|, the result is often inferior. Moreover,
since the information of publications are compacted into
the similarity graph, a lot of information that can be used
to fine-tune the clusters are lost, and a process similar
to the “merge scattered papers” phase of the original
method or the conflict detection process, is not easily made
possible. In fact, the “published year” attribute of papers
is left completely unused in the implementation.

VIII. Conclusion and Future Work
We presented an author disambiguation method based

on spectral clustering has similar accuracy with the orig-
inal method in AceMap based on hierarchical clustering,
but is more compact and faster by about 40%. Unlike the
original method which is deterministic, the results of the
new method is affected by the choice of seeds of the K-
means algorithm. The proposed method can also be used
to obtain an embedding of the publications.

While the method has many advantages, there are still
many aspects in which it can be improved. Firstly, the cur-
rent way of automatically finding the number of clusters
is not very reliable. Secondly, the generated embedding
cannot be simply processed by PCA for visualization.
Finally, it would improve the algorithm’s accuracy greatly
if more information could be represented in the similarity
graph.
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