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ABSTRACT
Most existing knowledge graphs (KGs) in academic domains suer
from problems of insucient multi-relational information, name
ambiguity and improper data format for large-scale machine pro-
cessing. In this paper, we present XKG1, a new large-scale KG in
academic domain. XKG not only provides clean academic informa-
tion, but also oers a large-scale benchmark dataset for researchers
to conduct challenging data mining projects including link predic-
tion, community detection and scholar classication. Specically,
XKG describes 3.13 billion triples of academic facts based on a con-
sistent ontology, including necessary properties of papers, authors,
eld of studies, venues and institutes, as well as the relations among
them. To enrich the proposed knowledge graph, we also perform
entity alignment with existing databases and rule-based inference.
Based on XKG, we conduct experiments of three typical academic
data mining tasks and evaluate several state-of-the-art knowledge
embedding and network representation learning approaches on the
benchmark datasets built from XKG. Finally, we discuss propose
several promising research directions that benet from XKG.
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1 INTRODUCTION
Knowledge graphs have become very crucial resources to support
many AI related applications, such as graph analytics, Q&A system,
web search, etc. A knowledge graph, which describes and stores
facts as triplets, is a multi-relational graph consisting of entities as
nodes and relations as dierent types of edges. Nowadays, many
companies and research teams are trying to organize the knowledge
in their domain into a machine-readable knowledge graph, e.g.,
YAGO [5], NELL [8], DBpedia [6], and DeepDive [2]. Although
these large-scale knowledge graphs have collected tremendous
amount of factual information about the world, many elds still
remain to be covered.

With information of papers, scholars, institutes, venues, eld
of studies and other useful entities, data mining on academic net-
works aims to discover hidden relations and to nd semantic-based
information. Several academic databases or knowledge graphs have
been built with structured academic data [11, 12, 15]. The public
academic knowledge graphs can provide scholars with convincing
academic information, and oer large-scale benchmark datasets for
researchers to conduct data mining projects.

However, there are some limitations in existing databases or
knowledge graphs. First, most of existing works provide homoge-
neous academic graphs, while relations among dierent types of
entities remaining lost [11, 15]. Second, some databases only con-
centrate on one specic eld of study, limiting the projects which
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aim at discovering cross-eld knowledge [11]. Third, synonymy and
ambiguity are also the restrictions for knowledge mining [12]. Al-
locating the unique IDs to the entities is the necessary solution, but
some databases use the names of the entities as their IDs directly.

In this paper, we propose Academic Knowledge Graph (XKG), an
academic semantic network, which describes 3.13 billion triples of
academic facts based on a consistent ontology, including commonly
used properties of papers, authors, eld of studies, venues, institutes
and relations among them. Apart from the knowledge graph itself,
we also perform entity alignment with the existing KGs or datasets
and some rule-based inference to further extend it and make it
linked with other KGs in the linked open data cloud. Based on XKG,
we further evaluate several state-of-the-art knowledge embedding
and network representation learning approaches in Sections 3 and 4.
Finally we discuss several potential research directions that benet
from XKG in Section 5 and conclude in Section 6.

Compared with other existing open academic KGs or datasets,
XKG has the following advantages.

(1) XKG oers a heterogeneous academic information network, i.e.,
with multiple entity categories and relationship types, which
supports researchers or engineers to conduct various academic
data mining experiments.

(2) XKG is suciently large (3.13 billion triples with nearly 100G
disk size) to cover most instances in the academic ontology,
which makes the experiments based on XKG more convincing
and of practical value.

(3) XKGprovides the entitymapping to computer science databases
including ACM, IEEE and DBLP, which helps researchers inte-
grate data frommultiple databases together to mine knowledge.

(4) XKG is fully organized in structured triplets, which is machine-
readable and easy to process.

2 THE KNOWLEDGE GRAPH
The XKG dataset can be freely accessed online. XKG is a large
academic knowledge graph with 3.13 billion triples. It covers almost
the whole academic area and oers a heterogeneous academic
network.

2.1 Ontology
All objects (e.g., papers, institutes, authors) are represented as en-
tities in the XKG. Two entities can stand in a relation. Commonly
used attributes of each entities including numbers, dates, strings and
other literals are represented as well. Similar entities are grouped
into classes. In total, XKG denes 5 classes of academic entities:
Papers , Authors , Fieldo f studies , Venues and Institutes . And the
facts including the frequently used properties of each entities and
the relations between the entities are described as triplets in the
knowledge graph. The ontology of XKG is shown in Figure 1.

To deal with synonymy and ambiguity, each entity in dened
classes are allocated with a URI. For example, XKG:7E7A3A69 and
ace:7E0D6766 are two scholars having the same name: Jiawei Han,
one of whom is the inuential data mining scientist. Compared with
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Figure 1: An overview of XKG Ontology

Table 1: Statistics of XKG
Class Number Class Number
Paper 61,704,089 Institute 19,843
Author 52,498,428 Field 50,233
Journal 21,744 Conference 1,278

Total Entities 114,295,615 Total Relations 3,127,145,831

Table 2: Statistics of node mapping
Database IEEE ACM DBLP

Mapping number 2,332,358 1,912,535 2,274,773

the datasets which uses entity names to represent entities directly,
XKG can avoid mistakes caused by synonymy and ambiguity,

The statistics of XKG are shown in Table 1. All the facts are
represented as subject-predicate-object triplets (SPO triplets). And
we release the Turtle format XKG online. It can be queried by
Apache Jena framework2 with SPARQL easily.

2.2 Entity alignment
In order to make XKG more connected and comprehensive, we map
a large part of papers in computer science of XKG to the papers
stored in IEEE, ACM and DBLP databases. All the latest papers in
those three databases have been aligned with XKG . Some mapping
statistics are shown in Table 2. The knowledge graph is updated
with the latest academic information periodically.

2.3 Inference
Rule-based inference on knowledge graph is a typical but critical
way to enrich the knowledge graph. The selected inference rules
that we design are shown in Figure 2. With those inference rules,
we can dene the new relations on XKG, which provides more
comprehensive ground truth.

3 KNOWLEDGE EMBEDDING
In this section, we will evaluate several state-of-the-art approaches
for knowledge embedding using our knowledge base XKG.

3.1 Task Denition
Given a set S of triplets (h, r , t) composed of two entities h, t ∈ E
(the set of entities) and a relation r ∈ R (the set of relationships),

2https://jena.apache.org
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Figure 2: Example of rule-based inference. The dotted ar-
rows are inferred predicates.

knowledge graph embedding maps each entity to a k-dimensional
vector in the embedding space, and denes a scoring function to
evaluate the plausibility of the triplet (h, r , t) in the knowledge base.
We study and evaluate related methods on link prediction proposed
by Bordes et al. [1]: given one of the entities and the relation in a
latent triplet, it aims to predict the other missed entity. The com-
monly used benchmark datasets are FB15K and WN18, which are
extracted from Freebase[4] and Wordnet[7]. We construct a new
benchmark dataset (denoted as XK18K in the rest of this section)
extracted from XKG for knowledge embedding. We will show how
it diers from FB15K and WN18 in section 3.2. We compare the
following algorithms in our experiments: TransE [1], TransH [17],
DistMult [18], ComplEx [16], HolE [9].

3.2 Experimental setup
To extract XK18K from XKG, we rstly select 68 critical interna-
tional venues and inuential papers published on them. Then we
add the triplets of authors, elds and institutes. Finally, the Train/
Valid/ Test datasets are divided randomly. Table 3 shows the statis-
tics of the WN18, FB15K and XK18K. XK18K is sparser than FB15K
but denser than WN18 (indicated by the value of #Trip/#E), and it
provides only 7 types of relations. We will evaluate the models’ scal-
ability on the knowledge base which has simple relation structure
but tremendous amount of entities. The code we used is based on
the OpenKE, an open-source framework for knowledge embedding.

3.3 Evaluation Results
We show the link prediction results based on knowledge embedding
in Table 4. The reported results are produced with the best set of
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Table 3: Datasets used in knowledge embedding.
Dataset #R #E #Trip. (Train/ Valid/ Test)
WN18 18 40,943 141,442 5,000 5,000
FB15K 1345 14,951 483,142 50,000 59,071
XK18K 7 18,464 130,265 7,429 7,336

Table 4: Results of link prediction task on XK18K

MRR Hits at
Model Raw Filter 1 3 10
TransE 0.358 0.719 62.7 82.5 89.2
TransH 0.315 0.701 61.0 77.2 84.6
DistMult 0.432 0.749 68.7 79.5 86.1
HolE 0.482 0.864 83.8 87.1 88.2
ComplEx 0.440 0.817 75.4 85.8 89.0

Table note: Filtered and Raw Mean Reciprocal Rank (MRR) and
Hits@{1,3,10} for the models tested on the AK18K dataset. Hits@{1,3,10}
metrics are ltered. Filtered metrics means removing from the test list
the other triplets that appear in the dataset while evaluation.

hyper-parameters after the grid searches reported in the papers.
The compared state-of-the-art models can be divided into two cate-
gories: i: translational models (TransE, TransH); ii: compositional
models (DistMult, HolE, ComplEx). TransE outperforms all coun-
terparts on hit@10 as 89.2%. Although 94.4% of relations in our
knowledge base are many-to-many, TransE shows its advantages
on modeling sparse and simple knowledge base, while TransH not
achieving better results. However, HolE and ComplEx achieve the
most signicant performance on the other metrics, especially on
hit@1(83.8%/75.4%) and on ltered MRR (0.482/0.440). We hypothe-
size that it conrms their advantages on modeling antisymmetric
relations because all of our relations are antisymmetric, such as
f ield_is_part_o f and paper_is_written_by.

Compared with the experiment results on FB15K and WN18
reported in [9], performances evaluated using XK18K is noticeably
dierent. First, results on XK18K are lower than those on WN18
but higher than those on FB15K. It is caused by the limited relation
types and large amount of potential entities per relation. Some
relation such as paper_is_in_f ield can have thousands of possible
objects per triplet, limiting the prediction performance. Second,
the performance gap between two model categories grows more
pronounced as the knowledge graph become more complicated,
which indicates the translational models with simple assumptions
can not model the complicated graph well.

4 NETWORK REPRESENTATION LEARNING
In this section, we will evaluate several state-of-the-art approaches
for network representation learning (NRL) on XKG.

4.1 Task Denition
Given a network G = (V ,E,A), where V denotes the vertex set,
E denotes the network topology structure and A preserves node
attributions, the task of NRL is to learn a mapping function f : v 7→

rv ∈ Rd , where rv is the learned representation of vertex v and d
is the dimension of vr . We study and evaluate related methods in-
cluding DeepWalk [10], PTE [13], LINE [14] andmetapath2vec
[3] on two tasks: scholar classication and scholar clustering.

Table 5: Datasets used in network representation learning.
Dataset #Paper #Author #Venue #Edge

FOS_Biology 1211664 2169820 13511 5544376
FOS_CS 452970 738253 10726 1658917

FOS_Economics 412621 597121 8269 1163700
FOS_Medicine 182002 491447 7251 819312
FOS_Physics 449844 596117 5465 1602723
FOS_5Fields 2578185 3868419 18533 10160137

Google 600391 635585 151 2373109
4.2 Experimental setup
Based on XKG, we rstly select 5 eld of studies (FOS) 3 and 5
main subelds of each. Then we extract all scholars, papers and
venues in those eld of studies respectively to construct 5 heteroge-
neous collaboration networks. We also construct 2 larger academic
knowledge base: 1) We integrate 5 networks above into one graph
which contains all the information of 5 eld of studies; 2) We match
the eight categories of venues in Google Scholar4 to those in XKG
. 151 of 160 venues (8 categories × 20 per category) are success-
fully matched. Then we select all the related papers and scholars
to construct one large heterogeneous collaboration networks. The
statistics of these networks are shown in Table 5. Moreover, the
category of scholars are labeled with the following approach:
(1) To label the papers, we adopt the eld of study information and

Google scholar category directly as the label of papers in 6 eld
of study networks and 1 Google scholar network respectively.

(2) As for the label of the scholars, it is determined by the majority
of his/her publications’ labels. When some labels have equal
quantity of papers, they are chosen randomly.

4.3 Evaluation Results
4.3.1 Classification. We adopt logistic regression to conduct

scholar classication tasks. Note that in this task 5-fold cross vali-
dation are adopted. Table 6 shows the classication results evalu-
ated by micro-f1 and macro-f1. metapath2vec learns heterogeneous
node embeddings signicantly better than other methods. We at-
tribute it to the modied heterogeneous sampling and skip-gram
algorithm. However, DeepWalk and LINE also achieve comparable
performance, showing their scalability on heterogeneous networks.
Another reason for the comparable performance is that our edge
types and node types are limited, homogeneous algorithm can also
learn a comprehensive network representation.

It should be noted that there is signicant performance gap
between FOS-labeled datasets and Google-labeled dataset. We hy-
pothesize that it is because of the dierent distribution of papers
and scholars. Papers collected in the Google-labeled dataset are
published on Top-venues and consequently few scholar could be ac-
tive in multiple categories, while there are more cross-eld papers
and scholars in FOS-labeled datasets.

Moreover, The performance indicates the level of interdiscipline
in these elds. For example, the highest micro-f1 shows that the
sub-elds of Biology are the most independent, while the lowest
micro-f1 means that the sub-elds of CS cross mostly. Finally, the
dramatical decline from micro-f1 to macro-f1, especially in Econ-
omy, indicates the imbalance of sub-elds in some eld of studies.

3biology, computer science, economics, medicine and physics
4https://scholar.google.com/citations?view op=top venues&hl=en&vq=eng
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Table 6: Results of scholars classication
Metric Method FOS_BI FOS_CS FOS_EC FOS_ME FOS_PH FOS_5F Google

Micro-F1

DeepWalk 0.792 0.545 0.692 0.663 0.774 0.731 0.948
LINE(1st+2nd) 0.722 0.633 0.717 0.701 0.779 0.755 0.955

PTE 0.759 0.574 0.654 0.694 0.723 0.664 0.966
metapath2vec 0.828 0.678 0.753 0.770 0.794 0.831 0.971

Macro-F1

DeepWalk 0.547 0.454 0.277 0.496 0.592 0.589 0.942
LINE(1st+2nd) 0.445 0.542 0.385 0.577 0.640 0.655 0.949

PTE 0.495 0.454 0.276 0.555 0.571 0.528 0.961
metapath2vec 0.637 0.570 0.485 0.659 0.635 0.682 0.968

Table 7: Results of scholar clustering

Model FOS-labeled Google-labeled
DeepWalk 0.277 0.394
PTE 0.153 0.602
LINE(1st+2nd) 0.305 0.459
metapath2vec 0.427 0.836

4.3.2 Clustering. Based on the same node representation in
scholar classication task, we further conduct scholar clustering
experiment with k-means algorithm to evaluate the models’ perfor-
mance. All clustering experiments are conducted 10 times and the
average performance is reported.

Table 7 shows the clustering results evaluated by normalized
mutual information (NMI). Overall, metapath2vec outperform all
the other models, illustrating the modied heterogeneous sampling
and skip-gram algorithm can preserve the information of the knowl-
edge graph better. Another interesting result is the performance
gap between FOS-labeled dataset and Google-labeled dataset, which
indicates the hypothesis we proposed in section 4.3.1.

5 FUTURE DIRECTIONS
There are other research topics which can leverage XKG. In this
section, we propose three potential directions in this section.
Cooperation prediction. To predict a researcher’s future coop-
eration behavior is an interesting topic in academic mining, and
many current works have contributed to it by considering previ-
ous cooperation, neighborhood, citation relations and other side
information. However, all these factors can be thought as obvious
feature in an academic knowledge graph, which is incomplete and
may always ignore some other features like the same institution
or the same eld. Given this situation, one may perform cooper-
ation prediction based on the NRL results, which can represent
the feature of a researcher better and may provide some help to
cooperation prediction task.
Author disambiguation. Author disambiguation is a traditional
problem in social network, which means distinguishing two people
with the same name in a network. With the help of XKG, author
disambiguation can be conducted conveniently. The structure and
node information in XKG can enhance the author disambiguation
performance. Then, some author disambiguation algorithms with
good performance can be applied to XKG. The author disambigua-
tion problem can be solved and the quality of XKG will be improved
in such an iterative way.

Finding rising star. Finding academic rising star is important in
academic mining in that it can provide helpful reference for uni-
versities and companies to hire young faculty or new scientist.
Researchers have raised various algorithms for this based on publi-
cation increasing rate, mentoring relations and some other factors.
In order to make the classication better, we will rst embed the
XKG to uncover the hidden structure features of rising star and
then apply some clustering algorithms on the embedding results.

6 CONCLUSION
In this paper we propose XKG, a large-scale knowledge graph in
academic domain, which consists of 3.13 billion triples of academic
facts based on a consistent ontology, including commonly used
properties of papers, authors, eld of studies, venues, institutes and
relations among them. Based on XKG, we design three experimental
evaluations and further compare several state-of-the-art approaches
using XKG. Besides, we propose several potential research topics
that can also benet from the dataset. We will keep maintaining and
updating the coverage of XKG for wider usage in this direction.
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