
Experiment Report

Group 4

Abstract
The website is named as ”Academic and More”. We did our utmost to op-
timal the performance and beautify our website, making it both clean and
informative.
Keywords: MVC, Elasiticsearch, Recommendation, Visualization

Contents

1 Back-end Integration 3
1.1 MVC Framework . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Controller . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Elasticsearch . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Configuration of Java Environment . . . . . . . . . . . 4
1.2.2 Deployment of Elasticsearch . . . . . . . . . . . . . . . 4
1.2.3 Installment of elasticsearch-head & Kibana . . . . . . . 4
1.2.4 Data Import . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Difficulties & Improvement . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Relational & Document-oriented . . . . . . . . . . . . 5

2 Front-end Development 6
2.1 Beautification . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Basic Structure . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Preparation . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Specific Implement . . . . . . . . . . . . . . . . . . . . 7

2.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Different Graphs and Their Respective Roles . . . . . 16
2.2.2 Specific Implement . . . . . . . . . . . . . . . . . . . . 17

2.3 Difficulties & Improvement . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Automatic Completion . . . . . . . . . . . . . . . . . . 31
2.3.2 Type of Tables . . . . . . . . . . . . . . . . . . . . . . 31

Preprint submitted to Experiment Report June 24, 2018



2.4 Function of Graphs . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Interaction between Back-end and Front-end 31
3.1 Specific Implement . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Homepage . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Result Page . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Author Page . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.4 Paper Page . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Difficulties & Improvement . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Tagging System . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Visualization with Kibana . . . . . . . . . . . . . . . . 41

4 Acknowledgement 42

2



1. Back-end Integration

1.1. MVC Framework
As is known, it’s sometimes troublesome to integrate components as a

whole in a team-development environment.
The biggest problem lies in the transmission of data between the front

end and back end. In the traditional framework, the user-interface designers
have to take the data transmission into consideration. And the back end
programmers also need to think how the front end will deal with these data.
Besides, the high coupling traditional framework makes it difficult to modify,
which clearly adds complexity to the development progress.

Hence, we need some way to separate the whole project into parts and
integrate them with a simpler logic.

So we finally chose the ultra-lightweight PHP development framework
Codeigniter, which provides an easy-to-use MVC structure, to build our back
end structure of the website.

1.1.1. Controller
We create only one controller ”Home” to handle all the pages. The meth-

ods to control the page logic are listed in this controller.

1.1.2. Model
We overall create 3 models to realize the data transmission from our

database to the front end – “Author_model”, “Conference_model”, “Pa-
per_model” and “Tag_model”.

The first 3 models aim to deal with the data of different types of query
the user execute. And the last one ”Tag_model” will be use to deal with the
data about the tagging system, which will be introduced later.

1.1.3. View
This part will be left in the section “Interaction between Back-end and

Front-end”, as well as the specific methods in the Controller and Model.

1.2. Elasticsearch
Since this project is based on the previous website, which relies on MySQL

query sentence to perform searches, we found it difficult for our database to
assume the demand for speed. When the sentences’ structure went compli-
cated, such as the one for collecting the data for the force-directed graph,
it sometimes took almost 5s to load the simple graph. That was something
hard to stand. A good website won’t let its user wait that long. Even if we
reconstructed the SQL sentence, the speed still couldn’t meet the need of

3



our website. We then realized that to improve our website more radically,
the former search method must be abandoned.

At that moment we had to make a choice: Elasticsearch and Solr. These
two search servers are both based on Lucene, a high-performance information
retrieval toolkit.

In the end we chose Elasticsearch, the newly-developing but promising
one. Although Solr is more mature and provides more functions and sup-
ports more data formats excluding JSON, Elasticsearch has its advantage in
usability. It is more lightweight, and provides plenty of restful APIs such as
PHP and Python. This will bring great convenience for our tasks.

1.2.1. Configuration of Java Environment
Since Elasticsearch is developed with Java, it’s necessary to configure the

Java environment. So in the beginning we downloaded the Java Developer’s
Kit and did some related configuration.

1.2.2. Deployment of Elasticsearch
The deployment of Elasticsearch is also easy.
By simply running the batch file, Elasticsearch (version 6.2.4) will be

deployed in the computer.

1.2.3. Installment of elasticsearch-head & Kibana
Although we have already installed Elasticsearch, we still can’t check the

status of our server in an easy way. Besides, we sometimes need to do some
test query.

At this point the plug-in elasticsearch-head is really useful. It shows
clearly every index’s distributed shards and replicas, as well as the overall
health status. We can also check the initial data of every index.

The installment is via git and npm.
Moreover, we install Kibana, an open-source platform for analysis and

visualization. We at first expected to use it to realize part of our visualization
tasks. But unfortunately, limited by time, we couldn’t gain insight to the
function. We simply use it as a tool to design our query DSL. This part will
be left in our reflection.

1.2.4. Data Import
Given that the scale of our data is quite small, we decided to directly use

Elasticsearch as our back end database, omitting the steps of synchronizing
data between Elasticsearch and MySQL. So we need to import our data into
Elasticsearch, which was performed with the help of Python API.

Since the database of Elasticsearch is document-oriented, which is totally
different from MySQL, we need to reconstruct our data’s format.

4



Author. At first, for every author’s information, we only stored his ID,
name, number of papers and the affiliation he publishes his papers most. But
as we started to design the visualization part, where the data that belongs
to different types are organized closely, we found out that the structure of
documents was too simple to meet the demand. So we chose to create some
redundancy, which is also called “denormalizing”, to increase the speed of
data retrieval.

For our tree view and force-directed graph, we added the information of
the ID of the author’s students and teachers. In this case, we don’t need to
execute extra query when doing these visualization.

Paper. The same reason for expanding the data storage goes for documents
of papers, too. To create the several layers of the search results, we added the
information of the sequence, id, name of each of its authors. And in the end,
every paper’s publish year and the tags are included to realize the tendency
chart and the tagging system respectively.

Conference. Even though the data scale of conference is very small, we
still create an index to store conference’s information to further improve the
performance. The information includes the conference’s id, name, website,
brief introduction as well as the numbers of its papers in last 10 years.

1.3. Difficulties & Improvement
1.3.1. Data Structure

It’s quite regrettable that we use a very simple structure to manage our
data. The indexes are isolated, with no high-level relationship to connect
them. So we use a lot of denormalization to meet the need of query. This
makes it difficult to design our DSL sentence, and eats up more space.

After some reflection, we find that maybe the so-called “Parent-Child”
relationship can help us.

“Parent-Child” relationship allows us to deal with one-to-many relation-
ship. We can connect two kinds of documents with a mapping and define
the detailed relationship. And since they are related to each other, it would
bring great convenience for us when maintaining the data and executing the
query.

1.3.2. Relational & Document-oriented
When using Elasticsearch’s API to execute query, we find it a bit con-

fusing to deal with the document-oriented database. It truly differs from
the relational database like MySQL. Document-oriented database aims to
scale the data horizontally, while relational database tries to optimize the
structure by scaling the data vertically.

5



It’s hard to judge which one is better, since they both have their own
advantages. It depends on the circumstances. But the popular solution is to
use them cooperatively.

2. Front-end Development

The value of a website lies in what value it can provide to its users. It
depends on what the website can do, and whether it is visually acceptable
for users. Therefore, as a simple paper-search product, our website use beau-
tification and visualization to show the search result, trying our best to cater
for user experience.

2.1. Beautification
As the back end and front end are connected, the websites can realize the

fundamental options, but the appearance is far from beautiful. We intend
to offer users the best experience of using our product. We made efforts in
the beautification work, hoping to make academic search more flexible and
convenient.

2.1.1. Basic Structure
The basic structure of our web page is as follows:

2.1.2. Preparation
We used some ready-made CSS files in our web designing to ease our

burden and make more beautiful pages.

6



Bootstrap. Bootstrap is an open source toolkit for developing with HTML,
CSS, and JS. Web designers can prototype their ideas or build their entire
app with the Sass variables and mixins, responsive grid system, extensive
prebuilt components, and powerful plugins built on jQuery

We used this css file to form the frame of our websites, including the
navigation bars, page layout, and the style of displaying our searched data.

Button. This module contains many different styles of button, we performed
it to design our own buttons.

2.1.3. Specific Implement
Home Page.

Description We set a ”javascript” auto-motivated graph as our back-
ground. We added the mouse-on effect to our project name ”A&M”. Below is
our three linked buttons, with ”acknowledgement” links to ”acemap.sjtu.edu.cn”,
”cooperation” links to ”IEEE class index” and the other one ”fantasy” links
to three general graphs. Between them is our searching bar. Users can change
their searching objects via choosing different options in the drop-down menu
beside. By triggering the ”search” button, they can visit corresponding pages.

Solution Design In this page, the core is to achieve the function of
the conversion of search content. As is mentioned above, we add an option
button after the search box, through which users can freely switch searching
contents. Below is the source code.

1 < l i id=” opt ions ”>
2 <a id=” change ”>Author</a>
3 <ul c l a s s=”subnav”>
4 < l i> <a id=” authortype ”>Author</a></ l i>
5 < l i> <a id=” papertype ”>Paper</a></ l i>
6 < l i> <a id=” con f e r ence type ”>Conference<

/a></ l i>
7 </ ul>
8 </ l i>

We used the attribute ”li” in the ”flatnav.css”. As users choose different
searching options, data is sent back to the backend via different ids.

Effect Display Our home page looks like:

7



Result Page of Scholar.

Description This page shows ten of the searching results. You can
visit our home page and ”about us” page easily through the top navigation
bar. We highlight the text you are searching for and show you the number
of searching results in the front of this page, you can view more results by
triggering the ”next” and ”previous” button below. For more specific scholar
information, just click on the ”play” button at the end of the scholar.

Solution Design We used models in ”bootstrap.css” to design the Nav-
igation bar. Below is the code.

1 <div c l a s s=” navbar navbar−i n v e r s e navbar−f i xed−
top ”>

2 <div c l a s s=”navbar−i nne r ”>
3 <div c l a s s=” conta iner−f l u i d ”>
4 <button type=” button ” c l a s s=”btn btn−navbar ”

data−t o g g l e=” c o l l a p s e ” data−t a r g e t=” . nav−
c o l l a p s e ”>

5 <span c l a s s=” icon−bar ”></span>
6 <span c l a s s=” icon−bar ”></span>
7 <span c l a s s=” icon−bar ”></span>
8 </ button>
9 <a c l a s s=”brand” h r e f=”/ index . php/home”>A&M</a>

10 <div c l a s s=”nav−c o l l a p s e c o l l a p s e ”>
11 <ul c l a s s=”nav”>
12 < l i c l a s s=” a c t i v e ”><a hr e f=”/ index . php/home”>

Home</a></ l i>

8



13 < l i><a hr e f=”/ index . php/home/about ”>About</a></
l i>

14 </ ul>
15 </ div>
16 </ div>
17 </ div>
18 </ div>

This ready-made class “navbar navbar-inverse navbar-fixed-top” in “boot-
syrap” achieve the function of top navigation bar. It links to our home page
and “About Us” page.

Effect Display The page looks like:

Scholar Page.

Description This page is divided into two parts, the left of which shows
the teacher-student tree and the force graph. The right part displays the
highlighted scholar name, paper number, total citation, affiliation name and
some of his or her published paper titles.

Solution Design As we drew the visualization graphs in other pages,
we need to project them into this page. We used ”Html” attribute ”iframe”
to achieve it.

9



1 <if rame s r c=” author_student_tree ? id=<?php echo
$id ; ?>” frameborder = ’0 ’ width = ’400 ’
s c r o l l i n g =’No ’ he ight = ’800 ’ l e f tmarg in = ’0 ’
topmargin = ’0 ’ id =’graph ’></ i f rame>

The ”iframe” tag specifies an inline frame. An inline frame is used to
embed another document within the current HTML document. This ‘iframe’
links to the graph in the “author_student_tree.php” identified by its ‘id’.
The rest of the code sets the image format.

Effect Display It will look like:

Result Page of Paper.

Description The structure of this page is the same as the previous
one. The left part shows the trend of frequency of the text you are searching
for as part of a paper title. But one thing we would like to mention is that
we changed the way of result displaying. They are shown in the drop-down
style. Every result includes three parts, the first of which is the paper title
shown on the page. The other two parts are hidden unless you click on the
title. As you click on it, you can see the co-author information and a ”play”
button for more specific information. Besides, we set tags for some of the
hot words, which will be elaborated later.

10



Solution Design

• Accordion Pull-Down Menu
The so-called accordion pull-down menu can display the Intrinsic con-
nection and structure of data clearly.

1 #accord ion . panel {
2 border : none ;
3 box−shadow : none ;
4 border−rad iu s : 0 ;
5 margin : 0 0 15px 10px ;
6 }

This defines the basic form of the accordion pull-down panel.

1 #accord ion . panel−t i t l e a : a f t e r ,
2 #accord ion . panel−t i t l e a . c o l l a p s e d : a f t e r {
3 content : ”\ f107 ” ;
4 font−f ami ly : fontawesome ;
5 width : 55px ;
6 he ight : 55px ;
7 l i n e−he ight : 55px ;
8 border−rad iu s : 50%;
9 background : #ebb710 ;

10 font−s i z e : 25px ;
11 c o l o r : #f f f ;
12 text−a l i g n : c en t e r ;
13 border : 1px s o l i d t ransparent ;
14 box−shadow : 0 3px 10px rgba (0 , 0 , 0 ,

0 . 5 8 ) ;
15 p o s i t i o n : abso lu t e ;
16 top : −5px ;
17 l e f t : −20px ;
18 t r a n s i t i o n : a l l 0 . 3 s ease 0 s ;
19 }

This defines the form of panel-title after one click. The background
color changes from white to yellow and the transition time lasts 0.3
second.

• Data Loop Output

11



As we have designed the framework of this page, the major problem
we are facing is the output of data with the specified format. Initially,
we repeated the codes of creating the accordion pull-down menu ten
times with different ids, this method did show ten of the results per
page, but if the number results in this page is less than ten, then some
empty menus appear on the screen, which is quite ugly. We solved it
by adding the codes of this format into the loop-output ‘php’ function.

1 f unc t i on getdata ( ) {
2 $ ( ”#accord ion ” ) . empty ( ) ;
3 $ . getJSON( ” paper_data ” , { ’ p a p e r t i t l e ’ : ’<?php

echo $_GET[ ’ p a p e r t i t l e ’ ] ; ?> ’ , ’ page ’ :
page } , f unc t i on ( data ) {

4 $ . each ( data , f unc t i on ( i , paper ) {
5 var panel ;
6 i f ( paper [ ’ tags ’ ] . l ength == 0)
7 { panel = ”<!−− Some codes −−>” ; }
8

9 e l s e {
10 var tag_content = ”” ;
11 f o r ( var j in paper [ ’ tags ’ ] ) {
12 tag_content += ”<!−− Some codes −−>” ; }
13 panel = ”<!−− Some codes −−>” ; }
14

15 $ . each ( paper [ ” autho r in f o ” ] , f unc t i on ( j ,
author ) {

16 var t r = ”<!−− Some codes −−>” ;
17 panel += t r ;
18 }) ;
19

20 var end = ”<!−− Some codes −−>” ;
21 panel += end ;
22

23 $ ( ”#accord ion ” ) . append ( panel ) ;
24

25 $ ( ”#b” + i + ”” ) . c l i c k ( func t i on ( ) {
26 $ ( window ) . a t t r ( ’ l o ca t i on ’ , ” paper_ind ? id=” +

paper [ ” id ” ] ) ; } ) ; } ) ; } )
27 $ ( ”#text ” ) . html ( page + ’/ ’ + pagenum) ; }

This part shows how we achieved the function of transferring the data
into the panel title. As you can see, we took the method of id matching.

12



As we number the ids of both the data and the panel title, we can pass
specific data to specific panel titles and print them on the screen. And
so is the panel body.

Effect Display The page is like:

Paper Page.

Description The page structure is the same as the previous one. How-
ever, users can visit the tag page and see the paper recommendation in this
page. As you click on the tag, you can visit its page. Similarly, as you click
on the text ”Maybe you will like”, you can see the recommended paper titles.
We recommended papers from papers with the same first author and papers
with the same tags.

Effect Display The page is like:

Tag Page.

Description We set tags according to popularity of common appeared
words or phrases. As you click on it in the specific paper page, you can visit
the tag page to derive more information. The tag page is still divided into
two parts. The graph in the left part shows the popularity and tendency of
this tag in recent years. The right part shows top ten most cited papers with
the same tag.

Effect Display The page is like:

13



Conference Page.

Description The above part of this page shows the conference name
and the abstract of it. The ”learn more” button links to its official page. The
graph below displays the number of papers it published in recent ten years
(2006-2015).

Effect Display The page looks like:

14



”About” Page.

Description We used ”Bootsrap” framework in this page. This page
shows our project name slogan and general function of this program.

Effect Display The page looks like:

2.2. Visualization
Data visualization is a scientific and technological research on the visual

representation of data. Among them, the visual manifestation of such data

15



is defined as a type of information extracted in a summary form, including
various attributes and variables of the corresponding information unit.

It is a concept that is constantly evolving and its boundaries are con-
stantly expanding. Mainly referring to technologically advanced technical
methods that allow visualization of data through expression, modeling, and
display of stereo, surface, attributes, and animation using graphics, image
processing, computer vision, and user interfaces. Explanation. Compared
with special technical methods such as stereo modeling, the technical meth-
ods covered by data visualization are much broader.

Data visualization technology includes the following basic concepts:

• Data Space
A multidimensional information space composed of data sets composed
of n-dimensional attributes and m elements;

• Data Development
It refers to the use of certain algorithms and tools for quantitative data
deduction and calculation;

• Data Analysis It refers to the multi-dimensional data slice, block, rotate
and other actions to analyze the data, so that the data can be observed
from multiple angles;

• Data Visualization It refers to the processing of data in a large data
set as a graphical image, and the use of data analysis and development
tools to discover unknown information.

Many methods have been proposed for data visualization. These methods
can be divided into a geometry-based technology, a pixel-oriented technol-
ogy, an icon-based technology, a hierarchy-based technology, an image-based
technology, a distributed technology, and the like, depending on the principle
of its visualization.

As a paper search website, visualization is indispensable, for the vivid
image we use visualization technology to draw can make our search result
more intuitive, and sometimes we can find information from these graphs as
well.

2.2.1. Different Graphs and Their Respective Roles
Chart & Pie Chart & Line Chart. I put these three kinds of graphs
together because they share a similar role: describing the overall situation.
Take pie chart as an example, we use pie chart to show thirteen conferences
and they are divided into two groups according to the number of papers. In

16



the graph we show the exact number of papers and ratio. In this way we
have an impression of the influence of each conference. Similarly, bar chart
is used to show the top 10 authors with the largest number of papers and
line charts are used to show the information of each year. Since they are not
so detailed, mostly they are put in our home page instead of result page.

Bubble Chart. The bubble chart is put in the specific paper page and
detailed information of every author is shown in the bubble, including author
sequence, coauthor numbers, student numbers, name and so on. Through the
bubble chart we make the connection between the paper and author closer
and we can infer which author is more famous in this paper.

Map. This is a special graph in which each point represents a different
affiliation, which shows its geographical position in a world map. You can
learn more about each affiliation and some geography as well.

Force-Directed Graph & Tree. These graphs describe the specific rela-
tionship between the author and coauthors. Two trees display the teacher
and student relationship directly, while the Force Graph displays every coop-
erator and their partnership clearly. It is a complement of author information
and maybe you can find someone you are interested.

2.2.2. Specific Implement
Echarts. ECharts is an open-source visualization library implemented by
JavaScript. ECharts provides regular line charts, histograms, scatter plots,
pie charts, K-line charts, box plots for statistics, maps, heat maps, and line
graphs for visualization of geographic data for visualization of relational
data Diagrams, tree maps, sunbursts, parallel coordinates for multidimen-
sional data visualization, funnel diagrams for BI, dashboards, and support
for mashups between diagrams. In addition to the already built-in charts
that contain rich functionality, ECharts also provides a custom series that
only needs to pass in a render item function to map from data to whatever
you want, and what’s even better is that these are already Some interactive
components work together without worrying about other things. We can
download the build file that contains all the charts on the download inter-
face. If you only need one or two of the charts and the build file containing all
the charts is too large, you can customize the build by selecting the desired
chart type in the online build.

Actually, some graphs are inspired by the source code from ECharts,
including bar chart, pie chart, line chart and bubble chart. I will introduce
them one by one.

17



Line Chart First, we introduce external web page to import tools
about ECharts, so that we do not need to set specific style and implement
function for drawing.

Then we set axis by determining type and data. Later we have to choose
our favorite style to decide the color and symbol:

1 opt ion = {
2 xAxis : {
3 type : ’ category ’ ,
4 data : [ ’ 2 0 06 ’ , ’ 2007 ’ , ’ 2008 ’ , ’ 2009 ’ ,

’ 2010 ’ , ’ 2011 ’ , ’ 2012 ’ , ’ 2013 ’ ,
’ 2014 ’ , ’ 2 015 ’ ]

5 } ,
6 yAxis : {
7 type : ’ value ’
8 } ,
9 s e r i e s : [ {

10 data : [ ] ,
11 type : ’ l i n e ’ ,
12 symbol : ’ t r i a n g l e ’ ,
13 symbolSize : 20 ,
14 l i n e S t y l e : {
15 normal : {
16 c o l o r : ’ green ’ ,
17 width : 4 ,
18 type : ’ dashed ’
19 }
20 } ,
21 i t emSty l e : {
22 normal : {
23 borderWidth : 3 ,
24 borderColor : ’ yel low ’ ,
25 c o l o r : ’ blue ’
26 }
27 }
28 } ]
29 } ;

After receiving data from back-end, a line chart is finished!

Bar Chart Similarly, we firstly introduce external web page to import
tools, after which we set axis and style. While in this graph, we try to use

18



some emphasis and make color with gradients, so the option part is a little
longer:

1 opt ion = {
2 t i t l e : {
3 t ex t : ’ Authors ’ ,
4 subtext : ’Top 10 authors with the

l a r g e s t number o f papers ’
5 } ,
6 xAxis : {
7 data : dataAxis ,
8 ax i sLabe l : {
9 i n s i d e : true ,

10 t e x t S t y l e : {
11 c o l o r : ’# f f f ’
12 }
13 } ,
14 ax i sTick : {
15 show : f a l s e
16 } ,
17 ax i sL ine : {
18 show : f a l s e
19 } ,
20 z : 10
21 } ,
22 yAxis : {
23 ax i sL ine : {
24 show : f a l s e
25 } ,
26 ax i sTick : {
27 show : f a l s e

19



28 } ,
29 ax i sLabe l : {
30 t e x t S t y l e : {
31 c o l o r : ’#999 ’
32 }
33 }
34 } ,
35 dataZoom : [
36 {
37 type : ’ i n s i d e ’
38 }
39 ] ,
40 <−− ! Other Options −−>
41 } ;

And this time we can extract data beforehand and get the graph directly.
To make our graph different, we can add some functions, for example:

1 myChart . on ( ’ c l i c k ’ , f unc t i on ( params ) {
2 conso l e . l og ( dataAxis [ Math . max( params .

dataIndex − zoomSize / 2 , 0) ] ) ;
3 myChart . d i spatchAct ion ({
4 type : ’ dataZoom ’ ,
5 s ta r tVa lue : dataAxis [ Math . max( params .

dataIndex − zoomSize / 2 , 0) ] ,
6 endValue : dataAxis [ Math . min ( params .

dataIndex + zoomSize / 2 , data . l ength
− 1) ]

7 }) ;
8 }) ; ;

So, if we click on one of the bar, the graph will become bigger and more
detailed according to the place you click.

Pie Chart The process is nothing new, so I only show the style part:

20



1 opt ion = {
2 t o o l t i p : {
3 t r i g g e r : ’ item ’ ,
4 f o rmatte r : ”{a} <br/>{b } : {c} ({d}%)”
5 } ,
6 l egend : {
7 o r i e n t : ’ v e r t i c a l ’ ,
8 x : ’ l e f t ’ ,
9 data : [ ’ECCV’ , ’NIPS ’ , ’SIGKDD’ , ’WWW’ , ’

SIGIR ’ , ’CVPR’ , ’ ICCV’ , ’NAACL’ ,
10 ’ICML’ , ’AAAI’ , ’ACL’ , ’EMNLP’ , ’ IJCAI ’ ]
11 } ,
12 s e r i e s : [
13 {
14

15 <−− ! Other Options −−>
16

17 data : [
18 { value :75329 , name : ’A+ ’ ,

s e l e c t e d : t rue } ,
19 { value :22886 , name : ’A’ }
20 ]
21 } ,
22 {
23

24 <−− ! Other Options −−>
25

26 data : [
27 { value : 8906 , name : ’ NIPS ’ } ,
28 { value : 6242 , name : ’SIGKDD’ } ,
29 { value : 8893 , name : ’WWW’ } ,
30 { value : 5050 , name : ’ SIGIR ’ } ,
31 { value : 6893 , name : ’ ICCV’ } ,
32 { value : 6516 , name : ’ ICML’ } ,
33 { value :12131 , name : ’AAAI’ } ,
34 { value :10623 , name : ’ACL’ } ,
35 { value :10075 , name : ’ IJCAI ’ } ,
36 { value : 4579 , name : ’ECCV’ } ,
37 { value :11791 , name : ’CVPR’ } ,
38 { value : 3974 , name : ’NAACL’ } ,
39 { value : 2542 , name : ’EMNLP’ } ,
40 ]

21



41 }
42 ]
43 } ; ;

Bubble Chart For the bubble chart, considering which characteristics
of the author we should use is of great importance. At last, we choose
author sequence, author name, cites, author ID, coauthors, teachers and
students these seven characteristics. Because cites and student number is
more effective, we use them to decide brightness and bubble size.

1 var schema = [
2 {name : ’ authorsquence ’ , index : 0 ,

t ex t : ’ Sequence ’ } ,
3 {name : ’ authorname ’ , index : 1 , t ex t :

’ Coauthors ’ } ,
4 {name : ’ c i t e s ’ , index : 2 , t ex t : ’

Total c i t e s ’ } ,
5 {name : ’ authorid ’ , index : 3 , t ex t : ’

ID ’ } ,
6 {name : ’ coauthors ’ , index : 4 , t ex t :

’Name’ } ,
7 {name : ’ t eacher s ’ , index : 5 , t ex t : ’

Teachers ’ } ,
8 {name : ’ students ’ , index : 6 , t ex t : ’

Students ’ } ] ;
9

10 <−− ! Other Options −−>

The following code can add a demonstration tool to help user understand
why the color and circle size are different:

22



1 visualMap : [
2 <−− ! Some Options −−>
3 ] ,
4 s e r i e s : [
5 {
6 name : ’ Author ’ ,
7 type : ’ s c a t t e r ’ ,
8 i t emSty l e : i temStyle ,
9 data : data

10 }
11 ]

After receiving data from back-end, bubble chart about a certain author
has finished!

Map Map is more like extension of our website with more abundant
data and more rich functions. So, I look for Acemap and find the world map
from it. After extracting data of each point from our database, I use python
to output these data – the number is just too large to do it by hands!

Then we can draw a map with the points we extract. What we have to
do next is to set a world map as background and determine the location of
these points. It is also necessary to ensure the point size appropriate.

1 var minBul l e tS i ze = 6 ;
2 var maxBul letSize = 11 ;
3 var min = I n f i n i t y ;
4 var max = − I n f i n i t y ;

23



5

6 AmCharts . theme = AmCharts . themes . b lack ;
7

8 // get min and max va lues
9 f o r ( var i = 0 ; i < mapData . l ength ; i++) {

10 var va lue = mapData [ i ] . va lue ;
11 i f ( va lue < min ) {
12 min = value ;
13 }
14 i f ( va lue > max) {
15 max = value ;
16 }
17 }
18

19 AmCharts . ready ( func t i on ( ) {
20 map = new AmCharts .AmMap( ) ;
21 map . p r o j e c t i o n = ” winkel3 ” ;
22

23 map . a r e a s S e t t i n g s = {
24 un l i s t edAreasCo lo r : ”#FFFFFF” ,
25 unl i s tedAreasAlpha : 0 . 1
26 } ;
27 map . imagesSe t t ings = {
28 bal loonText : ”<span s t y l e =’ font−s i z e

: 14 px;’><b >[ [ t i t l e ] ] </b></span>” ,
29 alpha : 0 . 6
30 }
31

32 var dataProvider = {
33 mapVar : AmCharts . maps . worldLow ,
34 images : [ ] ,
35 getAreasFromMap : t rue
36 }
37

38 dataProvider . images . push ({
39 type : ” c i r c l e ” ,
40 width : s i z e ,
41 he ight : s i z e ,
42 c o l o r : dataItem . co lo r ,
43 l ong i tude : l a t l o n g [ id ] . l ong i tude ,
44 l a t i t u d e : l a t l o n g [ id ] . l a t i t u d e ,
45 t i t l e : id+dataItem . name ,
46 value : va lue

24



47 }) ;
48 }
49

50 map . dataProvider = dataProvider ;
51 map . a r e a s S e t t i n g s = {
52 autoZoom : true ,
53 r o l lOve rBr i gh tne s s : 1 0 ,
54 s e l e c t e d B r i g h t n e s s : 20
55 } ;
56

57 map . smallMap = new AmCharts . SmallMap ( ) ;
58 map . wr i t e ( ”mapdiv” ) ;
59 }) ;

D3.js. D3.js is a useful JavaScript library for visualization. From the offi-
cial website of D3, we can learn that D3 allows you to bind arbitrary data
to a Document Object Model (DOM), and then apply data-driven trans-
formations to the document. For example, you can use D3 to generate an
HTML table from an array of numbers. Or, use the same data to create
an interactive SVG bar chart with smooth transitions and interaction.D3 is
not a monolithic framework that seeks to provide every conceivable feature.
Instead, D3 solves the crux of the problem: efficient manipulation of doc-
uments based on data. This avoids proprietary representation and affords
extraordinary flexibility, exposing the full capabilities of web standards such
as HTML, SVG, and CSS. With minimal overhead, D3 is extremely fast,
supporting large datasets and dynamic behaviors for interaction and anima-
tion. D3’s functional style allows code reuse through a diverse collection of
official and community-developed modules.

To be honest, some graphs are inspired by the source code from D3.js,
including force directed graph and tree graph. I will introduce them one by
one.

25



Tree Graph First, we draw a tree without any node or link:

1 f unc t i on t r e e ( ) {
2 var _chart = {} ;
3 var _width = 400 , _height = 800 ,
4 _margins = {top : 30 , l e f t : 90 , r i g h t

: 30 , bottom : 30} ,
5 _svg ,
6 _nodes ,
7 _i = 0 ,
8 _tree ,
9 _diagonal ,

10 _bodyG ;
11 _chart . render = func t i on ( ) {
12 i f ( ! _svg ) {
13 _svg = d3 . s e l e c t ( ”body” ) . append ( ” svg

” )
14 . a t t r ( ” he ight ” , _height )
15 . a t t r ( ” width ” , _width ) ;
16 }
17 renderBody ( _svg ) ;
18 } ;

Here we only set the size of the SVG graphics. D3.layout.tree handles
other things on its own and calculate the position of each node in turn. To
use the tree, just call the nodes function.

1 f unc t i on renderBody ( svg ) {
2 <−− ! Some Options −−>
3 }
4 f unc t i on render ( source ) {
5 <−− ! Some Options −−>
6 }
7 f unc t i on renderNodes ( nodes , source ) {
8 <−− ! Some Options −−>
9 }

Now we use the generated nodes as data and use them to generate nodes
in the tree. Use the index number as the ID of each node to ensure object
persistence.

26



1 var nodeEnter = node . ente r ( )
2 . append ( ” svg : g” )
3 . a t t r ( ” c l a s s ” , ”node” )
4 . a t t r ( ” transform ” , func t i on (d)
5 { return ” t r a n s l a t e ( ” + source . y0 + ” , ” +

source . x0 + ” ) ” ;
6 })
7 . on ( ” c l i c k ” , f unc t i on (d) {
8 t o g g l e (d) ;
9 render (d) ;

10 }) ;
11

12 nodeEnter . append ( ” svg : c i r c l e ” )
13 . a t t r ( ” r ” , 1e−6)
14 . s t y l e ( ” f i l l ” , f unc t i on (d) {
15 re turn d . _chi ldren ? ” l i g h t s t e e l b l u e ” : ”#

f f f ” ;
16 }) ;
17

18 var nodeUpdate = node . t r a n s i t i o n ( )
19 . a t t r ( ” transform ” , func t i on (d) {
20 re turn ” t r a n s l a t e ( ” + d . y + ” , ” + d . x + ” )

” ;
21 }) ;
22

23 nodeUpdate . s e l e c t ( ” c i r c l e ” )
24 . a t t r ( ” r ” , 4 . 5 )
25 . s t y l e ( ” f i l l ” , f unc t i on (d) {
26 re turn d . _chi ldren ? ” l i g h t s t e e l b l u e ” : ”#

f f f ” ;
27 }) ;
28

29 var nodeExit = node . e x i t ( ) . t r a n s i t i o n ( )
30 . a t t r ( ” transform ” , func t i on (d) {
31 re turn ” t r a n s l a t e ( ” + source . y
32 + ” , ” + source . x + ” ) ” ;
33 })
34 . remove ( ) ;
35

36 nodeExit . s e l e c t ( ” c i r c l e ” )
37 . a t t r ( ” r ” , 1e−6) ;
38 renderLabe l s ( nodeEnter , nodeUpdate ,

nodeExit ) ;

27



39 nodes . forEach ( func t i on (d) {
40 d . x0 = d . x ;
41 d . y0 = d . y ;
42 }) ;
43 }
44

45 f unc t i on renderLabe l s ( nodeEnter , nodeUpdate ,
nodeExit ) {

46 <−− ! Some Options −−>
47 }
48

49 f unc t i on renderLinks ( nodes , source ) {
50 <−− ! Some Options −−>
51 }) ;

In the enter section, the svg:path element is created, which describes the
connection between the source node and the destination node. The attribute
d is also generated using the previously defined diagonal generator. During
the process of generation, we will temporarily set the length of the connection
line is set to d3.svg.diagonal, which is to put the source node and the target
node in the same location, after which we adjust its length through animation
effects.

1 l i n k . ente r ( ) . i n s e r t ( ” svg : path ” , ”g” )
2 . a t t r ( ” c l a s s ” , ” l i n k ” )
3 . a t t r ( ”d” , f unc t i on (d) {
4 var o = {x : source . x0 , y : source . y0 } ;
5 re turn _diagonal ({ source : o ,

t a r g e t : o }) ;
6 }) ;
7 l i n k . t r a n s i t i o n ( )
8 . a t t r ( ”d” , _diagonal ) ;
9 l i n k . e x i t ( ) . t r a n s i t i o n ( )

10 . a t t r ( ”d” , f unc t i on (d) {
11 var o = {x : source . x , y :

source . y } ;
12 re turn _diagonal ({ source : o ,

t a r g e t : o }) ;
13 })
14 . remove ( ) ;
15 }
16 f unc t i on t o g g l e (d) {

28



17 <−− ! Some Options −−>
18 }
19 f unc t i on t o g g l e A l l (d) {
20 <−− ! Some Options −−>
21 }
22 _chart . width = func t i on (w) {
23 i f ( ! arguments . l ength ) re turn _width ;
24 _width = w;
25 re turn _chart ;
26 } ;
27 _chart . he ight = func t i on (h) {
28 <−− ! Some Options −−>
29 } ;
30 _chart . margins = func t i on (m) {
31 <−− ! Some Options −−>
32 } ;
33 _chart . nodes = func t i on (n) {
34 <−− ! Some Options −−>
35 } ;
36 re turn _chart ;
37 }
38 var chart = t r e e ( ) ;

Then we need to receive data to draw a complete tree, the required format
is json with “’name’ => and ’children’ =>”. To make the relationship clearer,
I split it into student tree and teacher tree, both of which follow this pattern.

Force-Directed Graph At first, we set the style of link and node,
then waiting for data to transfer. The process and principle is similar to tree

29



graph, so I will show some unique key code below.

1 var s imu la t i on = d3 . f o r c eS imu la t i on ( )
2 . f o r c e ( ” l i n k ” , d3 . f o r c eL ink ( ) . id ( func t i on (d)

{ re turn d . id ; }) )
3 . f o r c e ( ” charge ” , d3 . forceManyBody ( ) )
4 . f o r c e ( ” c ente r ” , d3 . f o r c eCente r ( width / 2 ,

he ight / 2) ) ;
5

6 var l i n k = svg . append ( ”g” )
7 . a t t r ( ” c l a s s ” , ” l i n k s ” )
8 . s e l e c t A l l ( ” l i n e ” )
9 . data ( graph . l i n k s )

10 . en te r ( ) . append ( ” l i n e ” )
11 . a t t r ( ” st roke−width ” , func t i on (d) { re turn

Math . s q r t (d . va lue ) ; }) ;
12

13 var node = svg . append ( ”g” )
14 . a t t r ( ” c l a s s ” , ” nodes ” )
15 . s e l e c t A l l ( ” c i r c l e ” )
16 . data ( graph . nodes )
17 . en te r ( ) . append ( ” c i r c l e ” )
18 . a t t r ( ” r ” , 5)
19 . a t t r ( ” f i l l ” , f unc t i on (d) { return c o l o r (d .

group ) ; })
20 . c a l l ( d3 . drag ( )
21 . on ( ” s t a r t ” , d rag s ta r t ed )
22 . on ( ” drag ” , dragged )
23 . on ( ”end” , dragended ) ) ;

30



2.3. Difficulties & Improvement
2.3.1. Automatic Completion

We did not modify the CSS file of the automatic completion box, thus
its appearance is not very beautiful. The length of it is not fixed and its
background color does not match the web background.

2.3.2. Type of Tables
The type of table is not rich enough.
We use several line charts to display our data, but in fact more choices

are provided. For instance, radar chart and heat map are also optional forms
when we display tags or conferences.

2.4. Function of Graphs
To make users learn more comprehensive information, function of each

graph can be enriched. For example, we can show the exact number of each
point and the maximum and minimum number in the line chart. And we
can show the paper number and number of authors in the point of map as
well. Additionally, the connection method of force graph can be improved,
maybe we add three-dimensional effects or something.

3. Interaction between Back-end and Front-end

Since the framework is finished, the remaining part is to just feed data
to our website.

3.1. Specific Implement
3.1.1. Homepage

The data needed in our homepage is mainly for the autoocomplete func-
tion.

Autocomplete. To realize the autocomplete function, we create the method
“hint-xxx” in our Controller.

1 pub l i c func t i on hint_author ( )
2 {
3 $q = s t r t o l o w e r ($_GET[ ” term” ] ) ;
4 $th i s−>load−>model ( ’ author_model ’ ) ;
5 $th i s−>author_model−>get_hint ( $q ) ;
6 }

31



The method accepts the user’s input, and load the method “get_hint” in
“Author_model”, which is defined as follows:

1 pub l i c func t i on get_hint ( $q )
2 {
3 $params = [
4 ’ s i z e ’ => 10 ,
5 ’ index ’ => ’ authors ’ ,
6 ’ type ’ => ’ te s t−type ’ ,
7 ’ body ’ => [
8 ’ query ’ => [
9 ’ p r e f i x ’ => [

10 ’name . keyword ’ => $q
11 ]
12 ] ,
13 ’ s o r t ’ => [
14 ’ num_paper ’ => [
15 ’ o rder ’ => ’ desc ’
16 ]
17 ]
18 ]
19 ] ;
20 $response = $th i s−>c l i e n t −>search ( $params ) ;
21 $data = $response [ ’ h i t s ’ ] [ ’ h i t s ’ ] ;
22 f o r each ( $data as $item ) {
23 $ r e s [ ] = array (
24 ’ id ’ => $item [ ’ _source ’ ] [ ’ id ’ ] ,
25 ’ l a b e l ’ => $item [ ’ _source ’ ] [ ’name ’ ]
26 ) ;
27 }
28 echo json_encode ( $ r e s ) ;
29 }

The method above performs the DSL to get the authors’ data whose name
begins with the parameter and sort them in order.

Other two “hint” methods use the similar DSL to collect the data for
autocomplete function.

3.1.2. Result Page
Author. When we click the form’s submit button in our homepage, we turn
to the “author” method.

32



1 pub l i c func t i on author ( )
2 {
3 $scholarname = $_GET[ ” scholarname ” ] ;
4 $th i s−>load−>model ( ’ author_model ’ ) ;
5 $num = $th i s−>author_model−>get_num (

$scholarname ) ;
6 $data [ ’ scholarname ’ ] = $scholarname ;
7 $data [ ’num ’ ] = $num ;
8 $th i s−>load−>view ( ’ authorview ’ , $data ) ;
9 }

The parameter “scholarname” is passed to the method. Then, to load
basic data such as the number of pages in our search result page, the method
invokes “get_num” to get the number of search results. In the end, data
including the scholar’s name and the number are sent to the “authorview”,
which will display the results piece by piece.

In “authorview”, we use AJAX to collect the authors’ information from
the back end. Every time when the event is triggered, the function “getdata”
defined in jQuery will ask method “author_data” to provide the needed data.

1 f unc t i on getdata ( ) {−−
2 <! Some codes −−>
3 $ . getJSON( ” author_data ” , { ’ scholarname ’ : ’<?

php echo $scholarname ; ?> ’ , ’ page ’ : page } ,
4 f unc t i on ( data ) {−−
5 <! Some codes −−>
6 })
7 }

And the method “author_data” will ask the data from “Author_model”
with the current page number and then receive the data in JSON form. The
data will straightly sent to the area needed to be filled in the result page.

1 pub l i c func t i on author_data ( )
2 {
3 $name = $_GET[ ” scholarname ” ] ;
4 $page = $_GET[ ” page ” ] ;
5 $ s t a r t = ( $page − 1) ∗ 10 ;
6 $th i s−>load−>model ( ’ author_model ’ ) ;
7 $th i s−>author_model−>get_last_ten_entr i e s (

33



$name , $ s t a r t ) ;
8 }

1 pub l i c func t i on get_las t_ten_entr i e s ($name ,
$ s t a r t )

2 {
3 $params = [
4 ’ s i z e ’ => 10 ,
5 ’ from ’ => $star t ,
6 ’ index ’ => ’my−index ’ ,
7 ’ type ’ => ’ te s t−type ’ ,
8 ’ body ’ => [
9 ’ query ’=> [

10 ’ match_phrase ’=> [
11 ”name” => $name
12 ]
13 ] ,
14 ’ s o r t ’=> [
15 ’ num_paper ’=> [
16 ’ o rder ’=> ’ desc ’
17 ]
18 ] ,
19 ’ h i g h l i g h t ’ => [
20 ’ pre_tags ’ => [ ”<span c l a s s =’

my_font’>” ] ,
21 ’ post_tags ’ => [ ”</span>” ] ,
22 ’ f i e l d s ’ => [
23 ’name ’ => new \ s tdCla s s ( )
24 ]
25 ]
26 ]
27 ] ;
28 }

And it’s worth mentioning that, as the above code shows, after we do
the query and sort, we also use the Elasticsearch’s highlight function, auto-
matically adding the pre-tags and post-tags for the search targets. So in the
result pages, these content will be highlighted for better presentation.

Paper. We create “paperview” to present the results when the user searches
for papers. And similar to “authorview”, it’s loaded by the method “paper”

34



in our Controller.

1 pub l i c func t i on paper ( )
2 {
3 $ p a p e r t i t l e = $_GET[ ” p a p e r t i t l e ” ] ;
4 $th i s−>load−>model ( ’ paper_model ’ ) ;
5 $num = $th i s−>paper_model−>get_num(

$ p a p e r t i t l e ) ;
6 $data [ ’ p a p e r t i t l e ’ ] = $ p a p e r t i t l e ;
7 $data [ ’num ’ ] = $num ;
8 $th i s−>load−>view ( ’ paperview ’ , $data ) ;
9 }

But this time we add a tendency chart of the numbers of papers in last
10 years in the paper’s result pages. So there are extra data needed to be
collected.

1 <if rame s r c=”paper_graph? p a p e r t i t l e=<?php echo
$ p a p e r t i t l e ; ?>” frameborder = ’0 ’ width = ’400 ’
s c r o l l i n g =’No ’ he ight = ’400 ’ l e f tmarg in = ’0 ’
topmargin = ’0 ’ id =’paper_graph ’></ i f rame>

The HTML “iframe” tag links to “paper_graph” in the Controller. This
method will load “paper_year_graph_view”, which will eventually be shown
in the result pages.

1 pub l i c func t i on paper_graph_data ( )
2 {
3 $ p a p e r t i t l e = $_GET[ ” p a p e r t i t l e ” ] ;
4 $th i s−>load−>model ( ’ paper_model ’ ) ;
5 $th i s−>paper_model−>get_year_data (

$ p a p e r t i t l e ) ;
6 }

Conference. Since the information needed in our conference’s result pages
is little, our back end structure is designed in a simpler way. That is, we don’t
need to use AJAX but instead directly transmit all the data when loading
“conferenceview”.

35



1 pub l i c func t i on con f e r ence ( )
2 {
3 $con f e r ence = $_GET[ ” con f e r ence ” ] ;
4 $ l i s t = array ( ’ECCV’ , ’NIPS ’ , ’SIGKDD’ , ’WWW

’ , ’ SIGIR ’ , ’CVPR’ , ’ ICCV’ , ’NAACL’ , ’ ICML’ , ’
AAAI’ , ’ACL’ , ’EMNLP’ , ’ IJCAI ’ ) ;

5 i f ( ! in_array ( $conference , $ l i s t ) )
6 {
7 $th i s−>load−>view ( ’ e r r o r s / error_404 ’ ) ;
8 }
9 e l s e

10 {
11 $th i s−>load−>model ( ’ conference_model ’ ) ;
12 $data = $th i s−>conference_model>

ge t_re su l t ( $con f e r ence ) ;
13 $th i s−>load−>view ( ’ conferencev iew ’ ,

$data ) ;
14 }
15 }

3.1.3. Author Page
The basic structure including the author’s specific information and teacher/s-

tudent tree graphs is similar to the result pages, so we will not repeat it now.
What we want to mention is the Force-Directed graph.

In “author_ind_view”, we set an “iframe” tag which links to “force_graph”
method:

1 pub l i c func t i on force_graph ( )
2 {
3 $author id = $_GET[ ” id ” ] ;
4 $data [ ’ author id ’ ] = $author id ;
5 $th i s−>load−>view ( ’ force_graph_view ’ , $data )

;
6 }

And in “force_graph_view”, we request the data from “force_graph_data”:

1 d3 . j son ( ”author_graph_data? author id=<?php echo
$author id ; ?>” , func t i on ( e r ror , graph ) {

2 })

36



And the method “author_graph_data” invokes “get_graph_data” to
collect the Force-Directed graph data.

1 pub l i c func t i on author_graph_data ( )
2 {
3 $author id = $_GET[ ’ author id ’ ] ;
4 $th i s−>load−>model ( ’ author_model ’ ) ;
5 $th i s−>author_model−>get_graph_data (

$author id ) ;
6 }

“get_graph_data” is quite complicated. Unlike the one-direction rela-
tionship in student/teacher trees, in the Force-Directed graph, we need to
determine relationships between every pair of coauthors. So it’s inevitable
to execute DSL more than once.

We first find all the cooperators of the author, and create the node of the
author.

1 $params = [
2 ’ index ’ => ’my−index ’ ,
3 ’ type ’ => ’ te s t−type ’ ,
4 ’ body ’ => [
5 ’ query ’=> [
6 ’ term ’=> [
7 ” id . keyword” => $author id
8 ]
9 ]

10 ]
11 ] ;
12

13 $response = $th i s−>c l i e n t −>search ( $params ) ;
14 $data = $response [ ’ h i t s ’ ] [ ’ h i t s ’ ] ;
15 f o r each ( $data as $item ) {
16 $ r e s = $item [ ’ _source ’ ] ;
17 }
18

19 $students = $re s [ ’ s tudent ’ ] ;
20 $t eache r s = $re s [ ’ t eacher ’ ] ;
21 $coauthors = $re s [ ’ coauthor ’ ] ;
22 $nodes [ ] = array (
23 ’ id ’ => $re s [ ’ id ’ ] ,
24 ’name ’ => $re s [ ’name ’ ] ,

37



25 ’ group ’ => 1
26 ) ;

And then, for each kind of cooperators (student, teacher, coauthor), we
use a loop to create nodes and links between the cooperators and the author.
We only take student type as an example.

1 f o r each ( $students as $student ) {
2 $params2 = [
3 ’ index ’ => ’my−index ’ ,
4 ’ type ’ => ’ te s t−type ’ ,
5 ’ body ’ => [
6 ’ query ’=> [
7 ’ term ’=> [
8 ” id . keyword” => $student
9 ]

10 ]
11 ]
12 ] ;
13

14 $response2 = $th i s−>c l i e n t −>search ( $params2 )
;

15 $data2 = $response2 [ ’ h i t s ’ ] [ ’ h i t s ’ ] ;
16 f o r each ( $data2 as $item2 ) {
17 $re s2 = $item2 [ ’ _source ’ ] ;
18 }
19

20 $nodes [ ] = array (
21 ’ id ’ => $res2 [ ’ id ’ ] ,
22 ’name ’ => $res2 [ ’name ’ ] ,
23 ’ group ’ => 2
24 ) ;
25

26 $ l i n k s [ ] = array (
27 ’ source ’ => $re s [ ’ id ’ ] ,
28 ’ t a r g e t ’ => $res2 [ ’ id ’ ] ,
29 ’ va lue ’ => 2
30 ) ;
31 }

Now, we’ve got all the nodes and the links between cooperators and the

38



author. It’s time to determine the relationship among these cooperators and
add links. We use a nested loop to realize it.

1 $ len = count ( $nodes ) ;
2 f o r ( $ i = 1 ; $ i < $ len ; $ i++){
3 $params5 = [
4 ’ index ’ => ’my−index ’ ,
5 ’ type ’ => ’ te s t−type ’ ,
6 ’ body ’ => [
7 ’ query ’=> [
8 ’ term ’=> [
9 ” id . keyword” => $nodes [ $ i ] [ ’

id ’ ]
10 ]
11 ]
12 ]
13 ] ;
14

15 $response5 = $th i s−>c l i e n t −>search ( $params5 )
;

16 $data5 = $response5 [ ’ h i t s ’ ] [ ’ h i t s ’ ] ;
17 f o r each ( $data5 as $item5 ) {
18 $re s5 = $item5 [ ’ _source ’ ] ;
19 }
20

21 f o r ( $ j = $ i + 1 ; $ j < $ len ; $ j++){
22 i f ( in_array ( $nodes [ $ j ] [ ’ id ’ ] , $ r e s5 [ ’

s tudent ’ ] )
23 | | in_array ( $nodes [ $ j ] [ ’ id ’ ] , $ r e s5 [ ’

t eacher ’ ] )
24 | | in_array ( $nodes [ $ j ] [ ’ id ’ ] , $ r e s5 [ ’

coauthor ’ ] ) ) {
25 $ l i n k s [ ] = array (
26 ’ source ’ => $nodes [ $ i ] [ ’ id ’ ] ,
27 ’ t a r g e t ’ => $nodes [ $ j ] [ ’ id ’ ] ,
28 ’ va lue ’ => 2
29 ) ;
30 }
31 }
32 }

And finally, we integrate the data into one array, and transform it to the

39



JSON form.

1 $ r e s u l t = array ( ’ nodes ’ => $nodes , ’ l i n k s ’ =>
$ l i n k s ) ;

2

3 echo json_encode ( $ r e s u l t ) ;

3.1.4. Paper Page
Apart from the basic information of the paper, in the paper page, we pro-

vide the user with our recommendation of other good papers and visualize the
authors’ information with the bubble chart. Another function fulfilled is the
tagging system, which is purposely designed to optimize the user experience.

Recommendation & Tagging system. Before we contrive the structure
of the recommendation module, we need to first realize the users’ needs.
When they are searching for a certain paper by its whole title or a part of
it, they often have an interest to learn more about the related area. For
instance, if a user is attracted by a paper in the author page, he may enter
the paper page for further information. It’s worth mentioning that in such a
case, he only focuses on the content or just the topic of the paper. In other
words, he finds a good “word”, and wants to know more about it.

But what exactly is a good “word”? How do we help him discovery more?
“Tagging system” is our solution. (Due to the limited time, we only fulfill
part of the system. There’re only one type of tags, which is of computer
science. We will discuss it later in the last chapter.)

The tagging system is based on the data of hot keywords in computer
science, which is provided by Acemap. And for these words, we extract them
from the papers’ title, and set them as a field of the paper-type documents.
Then, for every paper, we can tag them with a certain keyword, such as
“machine learning”.

We further group the papers by their tags. In the paper page, if the user
clicks the tag, the page will turn to the tag page, where the most popular
papers in this area as well as the development tendency will be shown.

Let us return our attention to the recommendation. With the help of
tagging system, we can easily recommend those papers with the same tags.
Besides, we also recommend the papers of the same authors, which we con-
sider also a good aspect of recommendation.

Since the structure of DSL is mainly the same as the former ones, we will
not show it here.

40



Bubble Chart. We this time again use the tag ”iframe” to control the bubble
chart. It will accept the data transmitted from ”paper_bubble_chart” in
Controller.

1 pub l i c func t i on paper_bubble_chart ( )
2 {
3 $paper id = $_GET[ ” id ” ] ;
4 $th i s−>load−>model ( ’ paper_model ’ ) ;
5 $paperdata = $th i s−>paper_model−>

get_ind_data ( $paper id ) ;
6 $authors = $paperdata [ ’ au thor in f o ’ ] ;
7 $th i s−>load−>model ( ’ author_model ’ ) ;
8 f o r each ( $authors as $author ) {
9 $data [ ’ au thor in f o ’ ] [ $author [ ’

authorsequence ’ ] ] = $th i s−>
author_model−>get_ind_data ( $author [ ’
author id ’ ] ) ;

10 } ;
11 $th i s−>load−>view ( ’ bubble_chart_view ’ , $data

) ;
12 }

Instead of defining another method, we directly use the method ”get-int-
data” in ”Author_model” to collect the author data.

3.2. Difficulties & Improvement
3.2.1. Tagging System

Due to the lack of data, we only set one type of tag. We may extract
our own hot keywords from other areas, which may need some knowledge of
data analysis.

3.2.2. Visualization with Kibana
As we mention above, Kibana is a powerful visualization platform. But

we only use it as a tool to interact with Elasticsearch.
Since our data are static, it may be unnecessary to use Kibana to analyze.

Nevertheless, we will try to use it to deal with the cases when the data feature
is unclear. Besides, we can use the combination of Elasticsesarch, Logstash
and Kibana to build the whole centralized blogging platform to support our
website.

41



4. Acknowledgement

It takes enormous efforts of the entire team to develop the website. We
truly discussed and coded together for days. Every member is irreplaceable.

Yixiong and Jiasong do a great job in beautifying our web page, making
it clean but informative. They pointe to positive directions in which the
others could easily fulfill the details.

Ruoyu is in charge of Visualization. He figures out the best way to enrich
the information based on the need of users, and provides a lot of interesting
functions.

Zhihui is responsible for the back-end integration and data transmission.
With his code as the starting point, he further integrates all the components
into MVC framework. He also uses Elasticsearch to boost the web.

And we’re thankful for the data provided by Acemap. Without these
data, a lot of functions may not be realized.

42


	Back-end Integration
	MVC Framework
	Controller
	Model
	View

	Elasticsearch
	Configuration of Java Environment
	Deployment of Elasticsearch
	Installment of elasticsearch-head & Kibana
	Data Import

	Difficulties & Improvement
	Data Structure
	Relational & Document-oriented


	Front-end Development
	Beautification
	Basic Structure
	Preparation
	Specific Implement

	Visualization
	Different Graphs and Their Respective Roles
	Specific Implement

	Difficulties & Improvement
	Automatic Completion
	Type of Tables

	Function of Graphs

	Interaction between Back-end and Front-end
	Specific Implement
	Homepage
	Result Page
	Author Page
	Paper Page

	Difficulties & Improvement
	Tagging System
	Visualization with Kibana


	Acknowledgement

