
The Report of the Project

14 组 沈贯 (324) 李晓 (293) 戴昊悦 (288) 杨子超 (330)

2018 年 6 月 23 日

目录

1 The Task of the Project 3
1.1 The primary and compulsory tasks 3
1.2 The advanced and recommended tasks 3
1.3 The innovated and characteristic tasks 3

2 The basic structure of the website 4

3 The primary and compulsory tasks 5
3.1 The search for paper title and conference 5

3.1.1 Analysis . 5
3.1.2 Implementation . 5
3.1.3 Effect . 6

3.2 The conference and paper pages . 7
3.2.1 Analysis . 7
3.2.2 Implementation . 7
3.2.3 Effect . 8

3.3 The page turn . 9
3.3.1 Analysis . 9
3.3.2 Implementation . 9
3.3.3 Effect . 10

4 The advanced and recommended tasks 11
4.1 Recommendations . 11

4.1.1 Analysis for basic principle . 11
4.1.2 Implementation for basic principle 11
4.1.3 Analysis for weighted random 12
4.1.4 Implementation for basic principle 12
4.1.5 Effect . 13

4.2 Optimization of the Database . 13
4.2.1 Analysis . 13

1

4.2.2 Implementation . 15
4.2.3 Effect . 16

4.3 Force Directed Graph . 16
4.3.1 Analysis . 16
4.3.2 Implementation . 17
4.3.3 Effect . 19

4.4 Mentoring Tree . 20
4.4.1 Analysis . 20
4.4.2 Implementation . 22

4.5 Large Difficulty . 25

5 The innovated and characteristic tasks 25
5.1 The appearance and interaction of home page 25

5.1.1 Effect . 27
5.2 Collaborative filtering . 28

5.2.1 Analysis and Implementation 28
5.3 Content-Based . 33

5.3.1 Analysis and Implementation 33

2

1 The Task of the Project

1.1 The primary and compulsory tasks

1. To add search for paper title and conference in the home page and
search result pages.

2. To build and create as well as modify paper and conference pages
in the website.

3. When each page displays information, if there are more information
items displayed (such as search results, list of papers, etc.), 10 items
are displayed per page and the page function is added.

1.2 The advanced and recommended tasks

1. Recommendations (such as the recommendation of co authors, CO
quotes, etc.) can be recommended in the paper page, and the paper
can be recommended by the scholar’s paper on the scholar’s page.

2. The search results are no longer based on simple MySQL queries,
and can be implemented with Solr or elasticsearch.

3. The display of the tree structure of teacher relationship can expand
the teacher relationship tree by layer. It is also necessary to consider
the situation of a scholar who may have multiple tutors.

4. Website performance acceleration, database optimization, SQL state-
ment optimization, etc.

1.3 The innovated and characteristic tasks

1. Allowing users to sign up and log in and user’s information including
preferences and visiting history will be recorded.

3

2. We also design and finish the key word page, you can give likes and
hates for this topic and every key word page will recommend the
user who is favour of this topic too.

3. The recommendations will be more advanced and intelligent and
they are based on user’s preferences and visiting history.

2 The basic structure of the website

This is the basic structure of our website. Many ways are designed
for users to jump from one page to another. Based on the MVC frame-
work, it is easy to add new pages (views in MVC) into it. Here are some
explanations for the pages. Every page except index included a naviga-
tion bar which provides the hyper-link to index and the search box to go
to the search result. The search results (the second layer in the chart)
would return a list of the candidates (papers or authors). There might
be a large amount of results. So we designed a simple pagination. And
users can click the hyper-link on the page to get more information (go
to the specific page of the candidate). And the details would be shown
in the following part.

4

3 The primary and compulsory tasks

3.1 The search for paper title and conference
3.1.1 Analysis

It is a relatively easy and simple task for that we have finished
similar tasks before and what we need to do is simply to simulate and
slightly modify the precedent source codes to make them adapt to this
task.We first expand the original search boxes which just included search
for authors and then attaches the hyperlinks and absolute and relative
url of the back end for searching for paper title and conferences. Then,
we finish writing the source codes for the search box and the imple-
mentation of search in the relevant php files including sql sentences and
further elasticsearch sentences. After that,we also make some beauti-
fication to make the search box look better and striking with the use
of bootstrap.And then, we finish the auto-complete for paper title.Due
to the fact that the number of conferences is small and we don’t finish
auto-complete for it.Finally,we decide to use fuzzy search to help users
find as many and precise search results as possible.Because the source
codes in the back end are a little bit long and not significant.Thus we
simply display the source codes for the search boxes.

3.1.2 Implementation

1 function switchmethod ()
2 {
3 switch (labe l)
4 {
5 case ”Conference” : act ion=”author_post/” ; l abe l=”Author” ;
6 $(”#inputbox”) . autocomplete ({
7 source : ”<?=site_ur l (”Search/author_auto_complete/”)?>” ,
8 minLength : 2
9 }) ;

10 break ;
11 case ”Author” : act ion=”paper_post/” ; l abe l=”Tit l e ” ;
12 $(”#inputbox”) . autocomplete ({
13 source : ”<?=site_ur l (”Search/paper_auto_complete/”)?>” ,
14 minLength : 2

5

15 }) ;
16 break ;
17 case ”Tit l e ” : $ (”#inputbox”) . autocomplete ({ source : ”<?=site_ur l (”Search/pass/”)

?>” ,minLength :2}) ; act ion=”conference_post/” ; l abe l=”Conference” ; break ;
18 }
19 $(”#btn”) . html (l abe l) ;
20 $(”#search”) . att r (” action ” , ”<?=site_ur l (”Search/”)?>”+action) ;
21 } ;
22 <form class=”bs−example bs−example−form” ro l e=”form” action=”<?=site_ur l (”Search/author_post/”)

?>” method=”post” id=” search”>
23 <div class=” input−group”>
24
25 <button class=”btn btn−default ” onclick=”switchmethod () ” id=”

btn” type=”button”>Author</NOtton>
26
27 <input type=” text ” class=”form−contro l form−control−l g ” placeholder

=”Input anything to search” id=” inputbox” name=”key”>
28
29 <button class=”btn btn−primary” type=”submit”>Go!</NOtton>
30
31 </div>
32 </form>

3.1.3 Effect

6

3.2 The conference and paper pages
3.2.1 Analysis

The difficulties of the pages of conference and paper are not how
to write the correct source codes because we have written some similar
pages, instead,how to decide what to display and how to display? We
must decide what will be displayed in the relevant pages due to the fact
that there aren’t compulsory requirements and we must make the most
use of our idea and intelligence to display the valuable and meaningful
information for the user.After that we must decide how to display? We
must use different regions to display different kinds of information to let
user clearly find out the necessary information. We also need to make
the outlook of there two pages unified and coordinated with the prece-
dent pages to combine them into a complete and well-organized website.
In the conference page, all the papers of this conference will be displayed
and every page will display ten piece of papers.The base of rank is based
on the citations,the more, the more preceding.And the PaperID,title and
publish year will also be displayed.And hyper links are attached to the
title,when clicked,it will jump into the relevant pages.
In the paper title page,all the authors including their AuthorID and
author name of this paper will be displayed in the order of author se-
quence.And it will also display its conference, publish year.What’s more,
the page will intelligently recommend similar papers.

3.2.2 Implementation

The ordinary source codes for these two pages is of no importance
and we don’t want to display them.The source codes for recommen-
dation will be displayed in the further section for the advanced and
recommended tasks.

7

3.2.3 Effect

8

3.3 The page turn
3.3.1 Analysis

It is a relatively easy and simple task because in lab4, with the use
of ajax, we have finished these task. What we need to do is to according
to the actual situation of the new conference and paper tile pages, we
modify and make a slight change on the source codes and transplant
them nearly totally.First,we create two buttons and bind functions with
them.And we then write the ajax function and the function used to sub-
stitute the pre-existing contents.The source codes for conference pages
about page turn will be displayed.And the source codes in the back end
is less important and we decided to ignore them.

3.3.2 Implementation

1 function multi_author_request (Author_Name,new_Page) {
2 i f (new_Page==0)
3 {
4 a l e r t (” I t has been the f i r s t page”) ;
5 return ;
6 }
7 i f (new_Page><?=$inform [”Total_Page”] ?>)
8 {
9 a l e r t (” I t has been the l a s t page”) ;

10 return ;
11 }
12 $. ajax ({
13 ur l : ”<?=site_ur l (”Search/multi_author_request/”)?>” ,
14 dataType : ” json ” ,
15 type : ”post” ,
16 async : true , //avoid the page co l l apse
17 data : {”Author_Name” :Author_Name, ”Page” : new_Page} ,
18 success : function (data) {
19 var html =”<thead><tr><td>Author ID</td><td>Author Name</td><td>Paper Number</td><

td>Af f i l i a t i on </td></tr></thead>” ;
20 var pre f ix = ”<?=site_ur l (”Search/single_author_page/”)?>” ;
21 Page=new_Page ;
22 fo r (var i =0; i<10; i++){
23 var row = data [i] ;
24 i f (row==undefined) continue ;
25 html +=”<tr><td>”+row [”Author_ID”]+”</td><td><a href=’”+pre f ix+row [”Author_ID”

]+”’>”+row [”Author_Name”]+”</td><td>”+row [”NUM”
]+”</td>” ;

26 i f (! row [”Affiliation_Name”]) html +=”<td>None
</td></tr>” ;

9

27 else html +=”<td>”+row [”Affiliation_Name”]+”</
span></td></tr>” ;

28 }
29 $(”#Table”) . html (html) ;
30 }
31 })
32 }

3.3.3 Effect

10

4 The advanced and recommended tasks

4.1 Recommendations
4.1.1 Analysis for basic principle

This is the most basic way in designing recommendation system:
with a specific paper given, we can easily find the papers that share
co-authors with it, that cites or be cited by the paper, the papers from
predicted teachers or students of the author, from the same affiliation
and so on. The fact means that all papers can be connected into a
web, with anfractuous relationship between each other, and what we are
supposed to do is to dig out the relationship and fetch the papers linked
to the given one. Take PHP codes for instance:

4.1.2 Implementation for basic principle

1 $con = mysqli_connect (” loca lhos t ” , ”” , ”” , ”acemap”) ;
2 $HisRelated=array () ;
3 $sql1 = ”SELECT PaperID FROM paper_reference where ReferenceID=’{$PaperID} ’ ” ;
4 $resu l t1 = mysqli_query ($con , $sql1) ;
5 while ($x=mysqli_fetch_array ($result1 ,MYSQLI_ASSOC)){
6 array_push ($HisRelated , $x [’ PaperID ’]) ;
7 } ;
8 $sql2 = ”SELECT ReferenceID FROM paper_reference where PaperID=’{$PaperID} ’ ” ;
9 $resu l t2 = mysqli_query ($con , $sql2) ;

10 while ($x=mysqli_fetch_array ($result2 ,MYSQLI_ASSOC)){
11 array_push ($HisRelated , $x [’ ReferenceID ’]) ;
12 } ;
13 $HisRelated2=array () ;
14 foreach ($HisRelated as $one){
15 $sql3 = ”SELECT Cite , Tit l e FROM papers where PaperID=’{$one} ’ ” ;
16 $resu l t3 = mysqli_query ($con , $sql3) ;
17 $x=mysqli_fetch_array ($result3 ,MYSQLI_ASSOC) ;
18 array_push ($HisRelated2 , array (’PaperID’=>$one , ’ Cite ’=>$x [’ Cite ’] , ’ Tit le ’=>$x [’ Tit le ’])) ;
19 }
20 i f (count ($HisRelated2)<=3){
21 foreach ($HisRelated2 as $onerec){
22 $RecPaperID=$onerec [’ PaperID ’] ;
23 $RecTitle=$onerec [’ Tit le ’] ;
24 echo”{$RecTitle}</

a>” . ”
” ;
25 }
26 }else{
27 $FinalRec=array () ;
28 while (count ($FinalRec)<3){
29 $OneBasicRecom=OneBasicRecom($HisRelated2) ;

11

30 i f (! in_array ($OneBasicRecom , $FinalRec)){
31 array_push ($FinalRec , $OneBasicRecom) ;
32 }
33 }
34 foreach ($FinalRec as $onerec){
35 $RecPaperID=$onerec [’ PaperID ’] ;
36 $RecTitle=$onerec [’ Tit le ’] ;
37 echo”{$RecTitle}</

a>” . ”
” ;
38 }
39 }

4.1.3 Analysis for weighted random

From the codes above, we can find something interesting: what if
we just want 3 papers, not all papers in a recommendation time? In
fact, just as a commodity product has its‘popularity’, we also judge a
paper’s popularity by the time it’s cited. First we store all the papers
dig from database in the candidate list ($HisRelated2 in codes above),
and then with the method of ‘Weighted Random’, every paper in
the list has the possibility to be recommended, while the more popular
a paper is, the more likely it is to be recommended. The PHP function
(OneBasicRecom) to accomplish weighted random is as follows:

4.1.4 Implementation for basic principle

1 function OneBasicRecom($ l i s t) {（ ’ PaperID’=>,’Cite ’=>,’Title ’=>）
2 $sum = 0;
3 $ l i s tPo int = array (0) ;
4 foreach ($ l i s t as $key) {
5 $sum+=$key [’ Cite ’] ;
6 array_push ($ l i s tPoint , $sum) ;
7 }
8 $num = rand (0 , $sum) ;
9 for ($ i = 0; $ i < count ($ l i s t) ; $ i++)

10 {
11 i f ($num >= $l i s tPo int [$ i] && $num < $l i s tPo int [$ i +1])
12 {
13 return $ l i s t [$ i] ;
14 }
15 }
16 return $ l i s t [count ($ l i s t)−1];
17 }

12

4.1.5 Effect

4.2 Optimization of the Database
4.2.1 Analysis

We spared no effort to accelerate the speed of loading the page.
And there are mainly three methods: preprocessing, ajax and Elastic
Search.

1. Preprocessing:
This is easy to understand and also used widely. Because the result
should be sorted by the paper number or the citation number, it
is natural to calculate them before the search and save them in the
database. We did an experiment. The speed with preprocessing is at

13

least 3 times faster than that without preprocessing. However, there
is also some “cost”. These data are redundant. If new papers are
added into the database, these data should be changed accordingly
to maintain the correctness of the result. But we think the speed of
the client is more important.

2. Ajax:
Ajax (Asynchronous JavaScript and XML) is a set of web develop-
ment techniques to create asynchronous web applications. To be
more specific, it can get the data from the server asynchronously
without interfering the display. By using it, there is no need to dis-
play all of the data and it can load the left data whenever needed.
We use it in as much as we could to make the speed of loading
faster, including the pagination, graph and some not so important
data (like the authors of a paper).

3. Elasticsearch:
Elasticsearch is a search engine based on Lucene. It provides a dis-
tributed, multitenant-capable full-text search engine with an HTTP
web interface and schema-free JSON documents. It uses the inverted
index to index the data. And this makes it excel at the tasks like
“like %sam%”, which in MySQL is a heavy task of high complex-
ity. Some concepts are similar to MySQL. But after reading about
the official document, we find that we couldn’t easily translate
the MySQL sentence to Elastic Search. All the operator to Elastic
Search is based on JSON data. Elastic Search is far more powerful
than we estimated. But we decided to use it in just some scenes it
excels at. In some traditional tasks, we still used MySQL. I installed
Elastic Search 6.0.1 and the Elastic Search Head which is a tool to
manage the database.
The standard analyzer is used by default for any full-text analyzed

14

string field. And some functions will use it. By separating the title
into several individual words, we could go deeper from searching by
matching the string to matching the words. This is based on the
fact that we often searched papers by some of the words in its title
(keywords). For example, when users want to search for “support
vector machine”, certainly Elastic Search and MySQL would give
the same results. But what if we forget the “vector”. In MySQL,
if you search by “LIKE %support machine%”, you won’t get any-
thing. But if we use analyzer to index the title and use match phrase
by setting the slop properly, we could still get the correct results we
want.
As for searching by author name, the problem is different. When
entering the name, it is most likely to make mistakes in some letters.
Like me, when testing the page, I usually search “xiaoou tang”. But
I make mistakes frequently by entering “xiaou tang”. So the strat-
egy should be different from searching by title. We use the fuzzy
match provided by Elastic Search.

4.2.2 Implementation

The source codes for database:
1 {
2 ”mappings” : {
3 ”paper” : {
4 ” propert i e s ” : {
5 ” t i t l e ” : {
6 ”type” : ” text ” ,
7 ”analyzer ” : ”standard”
8 } ,
9 ”paper_id” : {

10 ”type” : ” text ”
11 } ,
12 ” conference ” : {
13 ”type” : ” text ”
14 } ,
15 ”paper_publish_year” : {
16 ”type” : ” integer ”
17 } ,
18 ” c i t e ” : {

15

19 ”type” : ” integer ”}
20 }
21 }
22 }
23 }

The source codes for search:
1 $query = [
2 ” index” => ”papers” ,
3 ”type” => ”paper” ,
4 ”body” => [
5 ”query” => [”match_phrase” => [” t i t l e ”=>[”query”=>$t i t l e , ” slop ”=>”3”]]] ,
6 ” sort ” => [” c i t e ”=>[”order ”=>”desc”]] ,
7 ” s i z e ” => $start+ $this−>inform_per_page
8]
9] ;

The source codes for fuzzy search:
1 $query = [
2 ” index” => ”authors” ,
3 ”type” => ”author” ,
4 ”body” => [
5 ”query” => [”match” => [”name”=>[”query”=>$author_name , ” fuzz ine s s ”=>”Auto”]]] ,
6 ” sort ” => [”paper_num”=>[”order ”=>”desc”]] ,
7 ” s i z e ” => $start+ $this−>inform_per_page
8]
9] ;

4.2.3 Effect

4.3 Force Directed Graph
4.3.1 Analysis

For the force directed graph itself, most of the code is from the lab4.
And I did a little change, to make dynamical reaction to the users click or

16

other actions. I also used an extra library called d3-tip, which could help
create a more good-looking and practical tip to show the information of
every node. To be more specific, when the user put the mouse over the
node, then the edge which links the node would be bolder at the same
time.
I defined three new events: mouseover, mouseout and dbclick. The
mouseover and mouseout provided such function: when the mouse is
over one node, edges that link it will be thickened, which could help
the user find the cooperators easily. Also, the information of the node
will be shown in the tip. The dbclick would be executed when the user
double clicks the node. Then the page will jump to his page.
To conclude with, Elastic Search not only brought fast speed but some
new functions to make the search friendlier.

4.3.2 Implementation

1
2 var authorpref ix = ”<?=site_ur l (”Search/single_author_page/”)?>” ;
3 var svg = d3 . s e l e c t (”svg”) ,
4 width = +svg . attr (”width”) ,
5 height = +svg . attr (”height ”) ;
6
7 var co lor = d3 . scaleOrdinal (d3 . schemeCategory20) ;
8
9 var simulation = d3 . forceSimulation ()

10 . fo rce (” l ink ” , d3 . forceLink () . id (function (d) { return d . id ; }) . distance (function (d){ return
d . value }))

11 . fo rce (”charge” , d3 . forceManyBody ())
12 . fo rce (” center ” , d3 . forceCenter (270 ,300)) ;
13
14 d3 . json (”<?=site_ur l (”Search/force_directed_graph/”)?><?=$inform [”Author_ID”]?>” , function (

error , graph) {
15 i f (er ror) throw error ;
16 var l ink = svg . append(”g”)
17 . att r (” c l a s s ” , ” l inks ”)
18 . s e l e c tA l l (” l i n e ”)
19 . data (graph . l i nk s)
20 . enter () . append(” l i n e ”)
21 . att r (” stroke−width” , function (d) { return Math . sqrt (d . value) ; }) ;
22
23 var node = svg . append(”g”)
24 . att r (” c l a s s ” , ”nodes”)
25 . s e l e c tA l l (” c i r c l e ”)
26 . data (graph . nodes)

17

27 . enter () . append(” c i r c l e ”)
28 . att r (” r” , 5)
29 . att r (” f i l l ” , function (d) { return co lor (d . group) ; })
30 . on(”mouseover” , function (d , i){
31 t ip . show(d) ;
32 l ink . s ty l e (’ stroke−width ’ , function (edge){
33 i f (edge . source === d | | edge . target === d){
34 return 2*Math . sqrt (edge . value) ;
35 }
36 }) . s ty l e (’ stroke ’ , function (edge){
37 i f (edge . source === d | | edge . target === d){
38 return ’#000 ’;
39 }
40 }) ;
41 })
42 . on(”mouseout” , function (d , i){
43 t ip . hide () ;
44 l ink . s ty l e (’ stroke−width ’ , function (edge){
45 i f (edge . source === d | | edge . target === d){
46 return Math . sqrt (edge . value) ;
47 }
48 }) . s ty l e (’ stroke ’ , function (edge){
49 i f (edge . source === d | | edge . target === d){
50 return ’#ddd ’ ;
51 }
52 }) ;
53 })
54 . on(” db l c l i ck ” , function (d , i){
55 window . open(authorpref ix+d . id) ;
56 })
57 . c a l l (d3 . drag ()
58 . on(” s ta r t ” , dragstarted)
59 . on(”drag” , dragged)
60 . on(”end” , dragended)) ;
61 var t ip = d3 . t ip ()
62 . attr (’ c lass ’ , ’d3−tip ’)
63 . o f f s e t ([−10 , 0])
64 . html (function (d) {
65 return ”Name: ”+d .name+”\nID : ”+d . id ;
66 })
67
68 svg . c a l l (t ip) ;
69
70 simulation
71 . nodes (graph . nodes)
72 . on(” t i ck ” , t icked) ;
73
74 simulation . fo rce (” l ink ”)
75 . l i nk s (graph . l i nk s) ;
76 simulation . r e s ta r t () ;
77
78 function ticked () {
79 l ink
80 . attr (”x1” , function (d) { return d . source . x ; })
81 . attr (”y1” , function (d) { return d . source . y ; })
82 . attr (”x2” , function (d) { return d . target . x ; })
83 . attr (”y2” , function (d) { return d . target . y ; }) ;
84

18

85 node
86 . attr (”cx” , function (d) { return d . x ; })
87 . attr (”cy” , function (d) { return d . y ; }) ;
88 }
89
90 }) ;
91
92 function dragstarted (d) {
93 i f (! d3 . event . act ive) simulation . alphaTarget (0 .3) . r e s ta r t () ;
94 d . fx = d . x ;
95 d . fy = d . y ;
96 }
97
98 function dragged (d) {
99 d . fx = d3 . event . x ;
100 d . fy = d3 . event . y ;
101 }
102
103 function dragended (d) {
104 i f (! d3 . event . act ive) simulation . alphaTarget (0) ;
105 d . fx = nul l ;
106 d . fy = nul l ;
107 }

4.3.3 Effect

19

4.4 Mentoring Tree
4.4.1 Analysis

The basic idea to draw a mentoring tree is simple. Firstly, we
get the data of relationship between the scholars, then draw the graph.
At first, we use a backend page to searching scholar in our database,
translating the format of the data. Secondly, send the data to frontend
page by jQuery AJAX function. Finally, using javascript code to draw
the tree with the SVG element.

If we show all the students and advisors of a scholar, we can get nearly
infinite people——almost everyone has an advisor. For the users, what
they are mainly interested in is the status of a scholar. They may want
to know the advisor of the scholar, but not advisor of the scholar’s
advisor. When it comes to the students of the scholar, they may have
an interest in how many students the scholar has, and the students of
his (or her) students. So, we only need to present the students tree of a
scholar.

If we treat students of the scholar as first layer, the students of his
students as second layer, to let our page be clean and succinct, we only
show four layers. For further relationships, they have little connection
with the scholar we search, so we skip them to make the page clean.

A scholar may have advisor more than one, but in mentoring tree,

20

a node only has one root. That’s another reason why we only show
mentoring tree from the students’direction. When we search scholar A,
showing his student B. B may have other advisors, but when we search
scholar A, we only present A is B’s advisor. This principle guarantees
the completeness of mentoring tree.

Now we accomplish the backend page. We obtain data of relation-
ship in table“relationship”, in which it stores a scholar’s id and his
advisor’s id. When it comes to search scholar in database, we take such
strategy:

• Search the student’s id whose“teacher”id equal to the scholar’s
id. These are the first layer of the mentoring tree. We not only add
relationship “scholar->students”to “$data”, but also create a
box to store these students id.

• Then we turn to the next layer. All the id in box are the root nodes
of the next layer. We create a circulate to build each layer. In
each circle, we build a new box, searching ids stored in old box as
“teacher”, adding relationship between them and their students,
putting their students into the new box for next circulate. At the
same time, if the students name has been in the data set, skip them
in the next circulate.

• Finally, return the data in json.

Now we come to finish the frontend part. We using javascript code,
so this function could be add into the webpage easily. The html show
graph by“SVG”element, which has a kind of elements: path. By path
element, we can draw Bézier curve, we use which to connect two node
in our mentoring tree.

Bézier curve is a parametric curve, composed of set of control points
and line between them. For Cubic Bézier curves, it has four point: start

21

point P1, end point P2 an d two medium points P3、P4. Move two
medium points, the shape of curve will change.

D3 document provide a useful function“d3.startify()”to construct
a root node from tabular data. It will return data in hierarchical struc-
ture. Then we have two choice: use tree structure or cluster structure.
We choose tree structure.

Besides, an important function we hope to accomplish is that when
we click a point, the children part of this node will disappear, and if we
click again, the hidden part will come into light. To accomplish this, we
write an “redraw”function, whenever we click the node, modify the
data and the whole graph will redraw. Here comes the detail.

4.4.2 Implementation

Prepare function and parameter we will use.
1
2 var s t r a t i f y = d3 . s t r a t i f y ()
3 . id (function (d) {
4 return d .name ;
5 })
6 . parentId (function (d) {
7 return d . parent ;
8 }) ;

22

This function translates the data format from tabular to hierarchi-
cal.

1 function connector (d) {
2 return ”M” + d . y + ” , ” + d . x +
3 ”C” + (d . y + d . parent . y) / 2 + ” , ” + d . x +
4 ” ” + (d . y + d . parent . y) / 2 + ” , ” + d . parent . x +
5 ” ” + d . parent . y + ” , ” + d . parent . x ;}

This function is the Bézier curves which connect to nodes.
1 function co l l apse (d) {
2 i f (d . chi ldren) {
3 d . _children = d . chi ldren ;
4 d . _children . forEach (co l l apse) ;
5 d . chi ldren = nul l ;
6 }
7 }

When we open the page refresh the page, this function collapse all
the mentoring tree branch.

Other function we use should be define in the next part.

Use AJAX get data, calculate the data and translate them into tree
structure.

1 d3 . json (” re la t i onsh ip . php? id=”+id , function (data) {
2 var root = s t r a t i f y (data) ;
3
4 root . each (function (d) {
5 d .name = d . id ; // t rans f e r r ing name to a name var iab le
6 d . id = i ; //Assigning numerical Ids
7 i++;
8 }) ;
9 root . x0 = 540;

10 root . y0 = 300;
11 root . chi ldren . forEach (co l l apse) ; // co l l apse the tree i n i t i a l l y
12 other code…………
13 }) ;

Now we define the redraw function. Get the tree structure.
1 function update (source) {
2
3 var nodes = tree (root) . descendants () ,
4 l i nk s = nodes . s l i c e (1) ;

The code above this line is overlook the link from the root to the
root itself.

23

Then update the node. When the redraw function been called, the
data has changed.

1 var node = svg . s e l e c tA l l (”g . node”)
2 . data (nodes , function (d) { return d . id | | (d . id = ++i) ; }) ;
3
4 var nodeEnter = node . enter () . append(”g”)
5 . att r (” c l a s s ” , ”node”)
6 . att r (”transform” , function (d) { return ” t rans la te (” + source . y0 + ” , ” + source . x0 + ”)” ;

})
7 . on(” c l i c k ” , c l i c k) ;

“nodeEnter”are the nodes which collapsed before but we extend
it this time. And the function “click”is defined as following:

1 function c l i c k (d) {
2 i f (d . chi ldren) {
3 d . _children = d . chi ldren ;
4 d . chi ldren = nul l ;
5 } e l s e {
6 d . chi ldren = d . _children ;
7 d . _children = nul l ;
8 }
9 update (d) ;

10 }

So if we click the node, hide the data to variable“ children”, and
redraw the SVG element.

1 var nodeExit = node . ex i t () . t rans i t i on ()
2 . duration (duration)
3 . att r (”transform” , function (d) { return ” t rans la te (” + source . y + ” , ” + source . x + ”)” ; })
4 . remove () ;

delete the nodes which has been hidden. D3 provide function to
achieve gradual change, set the variable“duration”to 500 millisecond.

Then append circle,text to the node, set the color, set the parameter
of the text. Now draw the curve.

1 var l ink = svg . s e l e c tA l l (”path . l ink ”)
2 . data (l inks , function (l ink) { var id = l ink . id + ’−>’ + l ink . parent . id ; return id ; }) ;
3 l ink . t rans i t i on ()
4 . duration (duration)
5 . att r (”d” , connector) ;
6 var l inkEnter = l ink . enter () . i n s e r t (”path” , ”g”)
7 . att r (” c l a s s ” , ” l ink ”)
8 . att r (”d” , function (d) {
9 var o = {x : source . x0 , y : source . y0 , parent :{x : source . x0 , y : source . y0}};

10 return connector (o) ;
11 }) ;

24

Transition links to their new position. Enter any new links at the
parent’s previous position.

1 l ink . ex i t () . t rans i t i on ()
2 . duration (duration)
3 . att r (”d” , function (d) {
4 var o = {x : source . x , y : source . y , parent :{x : source . x , y : source . y}};
5 return connector (o) ;
6 })
7 . remove () ;

Transition exiting nodes to the parent’s new position. Then delete
other link. That’s the basic idea of the frontend page.

4.5 Difficulty

There exist some difficult problem during our work. The biggest
problem we met in this part is how to implement the function of redraw.
First we have to define redraw function in “d3.json()”part, and the
function “click”also must define in this part. We have made mistake
that the function define in different part so they can’t work together.
Then how to update the condition of nodes also become difficulty. Fi-
nally, setting the parameter to draw the Bézier curve.

5 The innovated and characteristic tasks

5.1 The appearance and interaction of home page

We used bootstrap to develop the appearance of the pages. Boot-
strap is a free and open-source front-end framework (library) for de-
signing websites and web applications. And we also used a little ani-
mate(animate.css) to develop a dynamic effect to make the interaction
friendlier to the users. The concepts of container and column make it
easier to set type.

The index is the start of the website, for the sake of which it only

25

provides the simplest functions: search and log in (or sign up). The
input box could switch the mode to search by clicking the left button:
authors, papers or conference. And the blue button upper right would
call a modal for the user to log in or sign up. It would detect automat-
ically if the account exists. And if the account is not found, the user
will need to choose the topics(keywords) he(she) is interested in. This
would relate to the function of recommendation. When the go button is
clicked , the key the users input will be posted to the controller and the
controller would get the data needed from the model for the new page.
Because we come from the same dormitory 413, thus we name our web-
site 413 search.And we also use animate.css to finish the dynamic effect
and it is rather cute and interesting.And it is hard to display 3 photos to-
gether in latex due to the fact that the location of photo is not fixed.Thus
we cat and paste the three photos together and make 3 photos become
one photo.

26

5.1.1 Effect

27

5.2 Collaborative filtering
5.2.1 Analysis and Implementation

1. Basic Principles:
Collaborative Filtering is a recommendation approach widely used
in today’s apps and websites, like Taobao, music apps, Facebook
and so on. The growth of the Internet has made it much more dif-
ficult to effectively extract useful information from all the available
online information. The overwhelming amount of data necessitates
mechanisms for efficient information filtering. Collaborative filtering
is one of the techniques used for dealing with this problem. The mo-
tivation for collaborative filtering comes from the idea that people
often get the best recommendations from someone with tastes sim-
ilar to themselves. Collaborative filtering encompasses techniques
for matching people with similar interests and making recommenda-
tions on this basis. Collaborative filtering algorithms often require:
1) users’ active participation, 2) an easy way to represent users’ in-
terests, and 3) algorithms that are able to match people with similar
interests.

An example of predicting of the user’s rating using collaborative
filtering. At first, people rate different items (like videos, images,
games). After that, the system is making predictions about user’s
rating for an item, which the user hasn’t rated yet. These predic-
tions are built upon the existing ratings of other users, who have

28

similar ratings with the active user. For instance, in our case the
system has made a prediction, that the active user won’t like the
video.
Typically, the workflow of a collaborative filtering system is:
1) A user expresses his or her preferences by rating items (e.g. books,
movies or CDs) of the system. These ratings can be viewed as an
approximate representation of the user’s interest in the correspond-
ing domain.
2) The system matches this user’s ratings against other users’ and
finds the people with most ”similar” tastes.
3) With similar users, the system recommends items that the similar
users have rated highly but not yet being rated by this user (presum-
ably the absence of rating is often considered as the unfamiliarity of
an item)
And there are two approach in CF: the user-based one, and the item
based one. The difference lies on which is used as axises, and which
as vectors.

2. User System Build:
Apparently the CF is based on user system. So I designed a user
system, in which visitors should first sign up an account and then
browse the websites with logged-in status. With the ‘session’
method, we collect users’behavior towards different papers, and
correspondingly, record and edit his preferences degree in the infor-
mation about him stored in database.

3. How to define ‘similarity’?:
From the exposition above, we have get a relatively clear impression
on how CF works. Then comes the question: how to define, or
how to quantize a users behavior? We assume different degrees, like
viewing a paper for more than 30s adds +1; ‘like’a paper by

29

clicking the ‘like’button adds +3; while ‘dislike’adds -1. Or
if the user google the paper soon after he views it, we add positive
to his degree of this paper. However users’viewing track to other
websites isn’t available now, in the principle for safety. The PHP
codes to edit one’s preference are as follows:

1 function KeywordsArrayEdit ($userid , $KeywordsArray , $degree){
2 $con = mysqli_connect (” loca lhos t ” ,”” ,”” ,”acemap”) ;
3 $sql = ” set names utf8 ” ;
4 mysqli_query ($con , $sql) ;
5 $LevelArray=LevelArray ($KeywordsArray) ;
6 $sql=”SELECT Level0 , Level1 , Level2 , Leve l i so FROM user WHERE id={$userid}” ;
7 $ re su l t = mysqli_query ($con , $sql) ;
8 $x=mysqli_fetch_array ($result ,MYSQLI_ASSOC) ;
9
10
11 $Level0array=explode (’ , ’ , $x [’ Level0 ’]) ;
12 foreach ($LevelArray [0] as $x0){
13 $Level0array [$x0]+=$degree ;
14 }
15
16 $Level1array=explode (’ , ’ , $x [’ Level1 ’]) ;
17 foreach ($LevelArray [1] as $x1){
18 $Level1array [$x1]+=$degree ;
19 }
20
21 $Level2array=explode (’ , ’ , $x [’ Level2 ’]) ;
22 foreach ($LevelArray [2] as $x2){
23 $Level2array [$x2]+=$degree ;
24 }
25
26 $Level isoarray=explode (’ , ’ , $x [’ Level iso ’]) ;
27 foreach ($LevelArray [−1] as $xiso){
28 $Level isoarray [$xiso]+=$degree ;
29 }
30
31
32 $newstr0=implode (’ , ’ , $Level0array) ;
33 $newstr1=implode (’ , ’ , $Level1array) ;
34 $newstr2=implode (’ , ’ , $Level2array) ;
35 $newstriso=implode (’ , ’ , $Level isoarray) ;
36 $sql=”UPDATE user SET Level0=’{$newstr0 } ’ , Level1=’{$newstr1 } ’ , Level2=’{$newstr2 } ’ ,

Leve l i so=’{$newstriso } ’ WHERE id={$userid}” ;
37 mysqli_query ($con , $sql) ;
38 }

Some part of the codes (like level) will be illustrated in part3. Since
we have edit function, we can record a user’s preference in database.
Then how tocalculate similarity between different users? The princi-
ple is cosine formula: we regard different papers as different axises,

30

then that’s an n-dimension space. A user’s preference can be
demonstrated as a vector in the n-dimension space, and then the
similarity between two users can be demonstrated as intersection
angle between the two vectors. For preprocessing of vectors:

1 function getMod($arr) {//传入一个数组，返回其模长
2 $strModDouble = 0;
3 foreach ($arr as $val){
4 $strModDouble += $val * $val ;
5 }
6 $strMod = sqrt ($strModDouble) ;
7 i f ($strMod==0){return 1;}//防止除数为0
8 return $strMod ;
9 }
10
11 function getCosine ($arrMark , $arrAnaly){//标记向量和分析向量
12 $Vector = 0;
13 for ($ i = 0; $ i < count ($arrMark) ; $ i++){
14 $MarkVal = intva l ($arrMark [$ i]) ;
15 $AnalyVal = intva l ($arrAnaly [$ i]) ;
16 $Vector += $MarkVal * $AnalyVal ;
17 $ModProduct=getMod($arrMark)*getMod($arrAnaly) ;
18 }
19 $Cosine = $Vector/$ModProduct ;
20 return $Cosine ;
21 }

4. Difficulties and Solutions:

31

(a) Cold Setup:
From the basic ideas above, we can see that if a user has just
signed up and merely have any preferences or viewing tracks, it’
s difficult to give recommendation to him. So for the newcomers,
we combine with the part1 based on Relevance Popularity, and
let a user chooses fields he likes in the signing-up process.

(b) Diversity and the Long Tail:
Collaborative filters are expected to increase diversity because
they help us discover new products. Some algorithms, how-
ever, may unintentionally do the opposite. Because collabora-
tive filters recommend products based on past sales or ratings,
they cannot usually recommend products with limited historical
data. This can create a rich-get-richer effect for popular prod-
ucts, akin to positive feedback. This bias toward popularity can
prevent what are otherwise better consumer-product matches.
A Wharton study details this phenomenon along with several
ideas that may promote diversity and the ”long tail.”Several
collaborative filtering algorithms have been developed to pro-
mote diversity and the ”long tail” by recommending novel, un-
expected, and serendipitous items, which means lots of items
may remain deserted, and fails to be recommended as a vicious
circle. For solution, random may help but accuracy may be
sacrificed. In TURC2018, I attended a lecture given by CEO
of Kuaishou. In the lecture he stated that Kuaishou develops
unique algorism to remit long tail problem so that common users
can get viewers and fans too. I’ll make deeper acquaintance
to that later.

32

(c) Data Sparsity:
In practice, many commercial recommender systems are based
on large datasets. As a result, the user-item matrix used for col-
laborative filtering could be extremely large and sparse, which
brings about the challenges in the performances of the recom-
mendation. Now we have nearly 100,000 papers in database,
that’s quite big for operation, and what’s worse is that, with
the higher dimension, intersections between different users all
level off to 0, since users won’t view so many papers. In math-
ematic matrix factorization may help, but I think the most ef-
fective way is part3: Content-Based.

5.3 Content-Based
5.3.1 Analysis and Implementation

1. Basic Principles:
One of the biggest problem in CF is data sparsity. Optimization
design for the problem is dimensionality reduction: dimension isn’
t one-to-one linked to specific items, but to features extracted and
classified from items. This is why in reality industrial circles, CF is
always used together with CB. Main process of CB can be divided
into 3 parts: 1. Item Representation: For each item extract some
features (that is, the item’s content) to represent this item; 2. Pro-
file Learning: Using a feature data of a user’s favorite (and disliked)
item in the past to learn the user’s preference profile; 3. Recom-
mendation Generation:By comparing the characteristics of the user
profiles and candidate items obtained in the previous step, the user
is recommended a set of the most relevant items. For papers, the
tags (or features) we choose, is keywords.

2. Keywords Extraction:

33

First I should express my gratitude to Dr.Ja for his providing me
with keywords to each paper. However I found it can’t meet our
requirements for the two reasons below: 1)There are still too many
dimensions (keywords) 2)I don’t know relationship between key-
words. Why is that important? For example, if userA is interested
in English Premier League, while userB is interested in German
Bundesliga, FIFA should be recommended to both of them, in spite
the two keywords are definitely disparate. That’s because the two
topics both belong to a father topic: football. So we also need topic
relationships, that is, Topic Clustering.
My original idea for Topic Clustering is like this: first use web
crawler to fetch topic description of topics on web, and then use
natural language analysis to build an N-gram language model, fi-
nally use TensorFlow to build topic system.
Soon after I found it unnecessary, since a complete topic web is al-
ready in Acemap’s database. For one topic, its related topics can
be shown, and I only need to use web crawler to fetch all these datas.
Python codes are as follows:

34

1 import u r l l i b . request
2 import pymysql
3 from bs4 import BeautifulSoup
4 db = pymysql . connect (” loca lhos t ” ,”” ,”” ,”acemap”)
5 cursor = db . cursor ()
6
7 with open (’/ Users/markdana/Desktop/keys2 . txt ’ , ’ r ’) as f :
8 fo r l i n e in f . r ead l ines () :
9 try :
10 a_key_id=(l i n e . s t r i p ()) . s p l i t (’\ t ’) [0]
11 f i l e=u r l l i b . request . urlopen (”http ://acemap . s j tu . edu . cn/ topic /topicpage?

topicID=%s”%(a_key_id))
12 data=st r (f i l e . read ())
13 index1=data . f ind (’ Parent Topic : ’)
14 index2=data . f ind (’ Child Topic ’)
15 rawdata=data [index2 :]
16 index3=rawdata . f ind (’
 ’)
17 parent=data [index1 : index2]
18 ch i ld=rawdata [: index3]
19
20
21 soup1 = BeautifulSoup (parent , f eatures=’lxml ’)
22 soup2 = BeautifulSoup (chi ld , f eatures=’lxml ’)
23
24 for node in soup1 . f ind_al l (’ a ’) :
25 nodestr=st r (node)
26 index1=nodestr . f ind (’ topicID=’)
27 index2=nodestr [index1 :] . f ind (’\\ ’)
28 a_parent=nodestr [index1 :] [8 : index2]
29 print (a_parent)
30 sq l=”SELECT*FROM keyword_matrix where Parent=’%s ’ and Child=’%s ’ ”%(

a_parent , a_key_id)
31 cursor . execute (sq l)
32 r e su l t=l i s t (cursor . f e t c ha l l ())
33 i f len (r e su l t)==0:
34 sq l = ”INSERT INTO keyword_matrix (Parent , Child)VALUES(’%s ’ , ’%s ’) ” % (

a_parent , a_key_id)
35 try :
36 cursor . execute (sq l)
37 db . commit ()
38 except :
39 db . ro l lback ()
40
41 for node in soup2 . f ind_al l (’ a ’) :
42 nodestr=st r (node)
43 index1=nodestr . f ind (’ topicID=’)
44 index2=nodestr [index1 :] . f ind (’\\ ’)
45 a_child=nodestr [index1 :] [8 : index2]
46 print (a_child)
47 sq l=”SELECT*FROM keyword_matrix where Parent=’%s ’ and Child=’%s ’ ”%(

a_key_id , a_child)
48 cursor . execute (sq l)
49 r e su l t=l i s t (cursor . f e t c ha l l ())
50 i f len (r e su l t)==0:
51 sq l = ”INSERT INTO keyword_matrix (Parent , Child)VALUES(’%s ’ , ’%s ’) ” % (

a_key_id , a_child)
52 try :
53 cursor . execute (sq l)

35

54 db . commit ()
55 except :
56 db . ro l lback ()
57
58 except :
59 pr int (’11111111111111 ’)

3. Define ‘Level’ Sort:
From 3.2, we’ve already constructed a matrix which shows exactly,
a topic’s parents and children. Then how can we sort and locate
those topics from relationship between them?I define ‘Level’for
topics, just like‘depth’in graph theory: Level=0: the topic doesn’
t have a parent. Fundamental topics like biology, physics; Level=1:
max distance from fundamental topic point is 1, which means for
it there exists a parent whose Level=0; Clearly Level is defined in
recursion.
And Level=-1: Because the database we used for project is far
smaller than that of Acemap, some data we craw from web isn’
t in our database. They are‘isolated points’, which means it has
parent but the parent doesn’t exist in database; or it’s parent
can be found in database, but also isolated points. For convenience
to define level, we assume all the isolated pints are in level -1. The
python codes are as follows:

1 import pymysql
2 db = pymysql . connect (” loca lhos t ” ,”” ,”” ,”acemap”)
3 cursor = db . cursor ()
4 def order (A) :
5 orders =[]
6 sq l=”SELECT Parent FROM keyword_matrix WHERE Child=’%s ’ ”%(A)
7 cursor . execute (sq l)
8 tmp=cursor . f e t c ha l l ()
9 fo r x in l i s t (tmp) :
10 x_keyid=x [0]
11 #print (”pp : ”+x_keyid)
12 sql1=”SELECT Level FROM keywords WHERE KeywordID=’%s ’ ”%(x_keyid)
13 try :
14 cursor . execute (sql1)
15 parent_order=l i s t (cursor . f e t c ha l l ()) [0] [0]
16 #print (x_keyid+” ORDER= ”+str (parent_order))
17 except :
18 #print (x_keyid+” ORDER= NONE”)

36

19 continue
20 i f parent_order!=−1:
21 orders . append(parent_order+1)
22 e l s e :
23 x_keyid_order=order (x_keyid)
24
25 sql2 = ”UPDATE keywords SET Level=’%d ’ WHERE KeywordID=’%s ’ ”%(x_keyid_order ,

x_keyid)
26 cursor . execute (sql2)
27 db . commit ()
28
29 orders . append(x_keyid_order+1)
30
31 i f len (l i s t (tmp))==0:
32 return 0
33 try :
34 print (orders)
35 return max(orders)
36 except :
37 return −1
38
39 with open (’/ Users/markdana/Desktop/keys2 . txt ’ , ’ r ’) as f :
40 fo r l i n e in f . r ead l ines () :
41
42 try :
43 a_key_id=(l i n e . s t r i p ()) . s p l i t (’\ t ’) [0]
44 int=order (a_key_id)
45 print (int)
46 sq l = ”UPDATE keywords SET Level=’%d ’ WHERE KeywordID=’%s ’ ”%(int , a_key_id)
47 try :
48 cursor . execute (sq l)
49 db . commit ()
50 except :
51 pr int (”2222222222222”)
52 db . ro l lback ()
53 except :
54 pr int (’11111111111 ’)
55
56
57
58 sql3 = ”SELECT KeywordID FROM keywords WHERE Level=−1”
59 cursor . execute (sql3)
60 r e su l t=l i s t (cursor . f e t c ha l l ())
61
62 for l i n e in r e su l t :
63 a_key_id=l i n e [0]
64 sql4=”SELECT Parent FROM keyword_matrix WHERE Child=’%s ’ ”%(a_key_id)
65 cursor . execute (sql4)
66 r e su l t=l i s t (cursor . f e t c ha l l ())
67
68 print (a_key_id)
69 print (r e su l t)
70
71 r e s l i s t =[]
72 fo r x in r e su l t :
73 id=x [0]
74 sql5=”SELECT Level FROM keywords WHERE KeywordID=’%s ’ ”%(id)
75 cursor . execute (sql5)

37

76 res=l i s t (cursor . f e t c ha l l ())
77 try :
78 r e s l i s t . append(res [0] [0])
79 except :
80 r e s l i s t . append(−2)
81 print (r e s l i s t)

4. Store User’s Preferences:
From 3.3, every topic has its own Level and can be located by Lev-
elNo (sorted by TotalAmountOfPapers).Then how to store degrees
of different users? MySQL can’t store array, and if I create thou-
sands of columns, it’s quite unnecessary. So I decided to use a
string to store users’preferences. For example, there are 96 topics
with level 0, then create a column level0, and it stores a string with
96 numbers split with‘,’, like this: 2,2,2,2,-1,-2,1,0,0,0,-3,0,0,0,0,-
1,0,0,0,0,0,-2,….

5. Further thoughts:
From the whole process of building recommendation system, I have
got plain understand of different algorithms. However two main di-
rections need to be improved: 1.Arithmetic Speed. With the user
amount increasing, traverse all users and find the most similar may
cost lots of time. We can calculate all the time in end back (not
just when loading the page); and we can filtrate users into different
groups in order. 2.Recommendation Efficiency. We can add more
comprehensive functions to the edit module, so that the description
of a user can be more accurate. What’s more, we may develop
academic social network based on the users, and to stimulate com-
munication between researchers. That’s quite a nice idea.

38

