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Abstract—A community in networks is thought as
a cluster of nodes with more connections amongst
its members than between its members and out-
side nodes. Communities often have overlap since
it is possible that some nodes belong to multiple
communities. Overlapping community detection in
static networks is to discover communities without
considering the temporal evolution of the connec-
tions between nodes. However, it is evident that
human behaviors in social networks are highly
dynamic, which means that the relationship between
nodes and communities changes with time going by.
Due to the difficulties in evaluating the detected
result and in incorporating temporal factors to the
objective function, overlapping community detection
in temporal social networks is still an open problem.

In this paper, we present our direct dynamic
community detection approach for temporal social
networks, which is based on modeling distributions
of the strength of each membership over time.
The intuition behind our approach is based on
an observation that most memberships of nodes to
communities are either one-off within a short term
or long term. Experimental results show that our
approach achieves substantial improvement.

Keywords: community detection, temporal networks,
dynamics of social interaction

I. INTRODUCTION

In a network, it is common that there are some
groups of nodes, where the connections within groups
are evidently denser than the connections crossing
groups. Such groups are thought as communities in net-
works. We often allow that nodes can have memberships
of multiple communities in social networks, and such
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communities are called “overlapping communities”.!

Community can be considered as a group of people
frequently contacting with each other or sharing similar
interests in social networks, a scientific discipline in
citation networks and collaboration networks?, a func-
tional unit in biomedical networks, etc. Representing
the basic structures of networks, community detection
is essential to understand the organization of real-
world networks, infer the relationships among nodes
and better understand the network dynamics [1].

Static and Dynamic Networks Static networks have
no temporal factors on nodes or edges and thus the
relationship between nodes and detected communities
is fixed. While a dynamic network incorporates the
temporal information about interactions between nodes,
so that we can obtain a dynamic detected communities.
Many social networks can be viewed as both static and
dynamic, depending on whether we utilize the temporal
data [2]. Assume we have many tuples in the dataset
like (u,v,t,,t,) denoting that a researcher u published
a paper at time t, cites a paper of another researcher
v which is published at time ¢,. We call such a tuple
as an interaction in general networks. Static networks
only contains information about node pairs (u, v), while
dynamic networks take temporal factors ¢,, and ¢, into
consideration as well.

Static and Dynamic Community Detection It is
true that static networks are simple to model for they
prune much temporal information [3]. However, it is
sometimes too simplified to discover the time vary-
ing relationship between nodes and communities espe-
cially in temporal social networks. Human behaviors
are highly dynamic and consequently the relationship
between nodes and communities are not independent

IWe will always refer “community” to “overlapping community” in the
following content.

2Citation networks and collaboration networks are thought as two kinds
of social networks.
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Fig. 1: A static network: the researcher (node) is fixed in
between Computer Network community and Data Mining
community.

on time changing. For example, if we have two com-
munities in a certain citation network, which are about
Computer Network and Data Mining respectively. It is
possible that there is a node in this network denoting
a researcher who had been doing research in Computer
Network when he/she was a master student, but changed
his/her research interests to data mining when he/she
became a PhD student later. See Figure 1 and Figure 2.
3 Thus, this researcher was an active member of the
Computer Network community but the strength of this
membership decreases over time; while, the strength
of his/her membership of Data Mining community
increases with time going by.
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Fig. 2: A dynamic network: the researcher is an active
member of Computer Network community when he/she was
a master student; a less active researcher in both two com-
munity when he/she was a 2”d—year PhD student; an active
member of Data Mining community and an inactive member
of Computer Network Community when he/she was a 5%
PhD student.

Due to many such potential temporal factors influ-
encing the community structure of our networks, it is
necessary to represent temporal factors in the strength of
membership. Simply put, in static community detection
we consider the strength of the membership between

3Note that this is just a simple example to illustrate the dynamics, where
only one node is moving over time.

a node u and a community k£ as a function f(u,k),
while in dynamic community detection we consider it
as a function f(u, k,t) where ¢ is a certain timestamp.

Present work: Static Community Detection Much
work has been devoted to detecting communities in
very complex networks in various disciplines such as
computer science, statistics, applied mathematics, bioin-
formatics, social sciences, etc. Traditionally, the emer-
gence of communities in networks has been understood
through the strength-of-weak-ties theory [4], [5], which
conceptualize networks as consisting of dense clusters
that are linked by a small number of weak ties. As-
suming this view of network communities, graph parti-
tioning [6]—[8], modularity optimization ( [9], [10]), and
betweenness centrality based approaches for community
detection concentrate on identifying edges which can be
cut to separate the network into a set of non-overlapping
clusters. However, in social networks and many other
types of networks, overlapping community structure are
more desired. Some overlapping community detection
methods [11], [12] assume that the community overlaps
are less densely connected than the non-overlapping
part of communities. This unnatural assumption leads to
either identify a dense overlap as a separate community
or merge two overlapping communities into a single
one.

BIGCLAM [11] model finds an increasing relation-
ship between the number of shared communities and
the probability of nodes being connected by an edge
and then formulates community detection as a variant
of non-negative matrix factorization (NMF) and then
optimize the model likelihood of explaining the links
of the observed network, which is very provisional.

Present work: Dynamic Community Detection
Present work dynamic (overlapping) community detec-
tion can be divided into two kinds according to the
information they leverage: Indirect methods and Direct
methods: 1) Indirect methods firstly focus on identifying
communities within a set of snapshots of the target
network, and then synthesize a final model of their
lifetime based on the time steps [7], [13]-[15]. In each
snapshot of the network, temporal factors are thought
as the same and thus they can utilize static community
detection methods; 2) Direct methods design models
with temporal factors to directly leverage the whole
information in time series and then they can learn
the community structure from the original dynamic
network [16]-[18], Most of direct methods are based on
tensor decomposition techniques, resulting low physical
interpretation. We would like to discuss them more in



detail in Section II.

In this paper, we present our direct dynamic (over-
lapping) community detection approach for temporal
social networks, which is based on modeling distri-
butions of the strength of each membership over time
(Section IV and Section V). The intuition behind our
approach is based on an observation that most member-
ships of nodes to communities are either one-off within
a short term or long term (Section III). Experimental
results in Section VI show that our approach achieves
substantial improvement.

II. RELATED WORK

Indirect dynamic community detection methods usu-
ally involves many clusters generated from all the
snapshots. Previous work such as [15] only maintains
those most frequently appearing ones. Evolutionary
clustering (EC) [14] applies K-means clustering to a
similarity matrix generated from the current snapshot
and the clustering result of previous snapshots. Re-
searchers have replaced the K-means clustering with
other clustering methods or proposed new ways to
generate similarity matrices [7], [8], [13], [19], [20] to
improve EC. However, these methods use local infor-
mation (more specifically, a similarity matrix generated
from a small subset of snapshots) to identify clusters.
When snapshots are sparse and contain too few edges,
the similarity matrices provide little information for
clustering, and the detected clusters can be small and
fail to correspond to meaningful clusters. Moreover,
nodes are usually assigned to only one cluster in a
time step, while in real-world social networks or email
networks, a person may be part of multiple communities
at the same time.

Evolving stochastic block models (SBM) [5], [16],
[17] are proposed for a dynamic network where each
node has a mixed membership of communities defined
by the model. A probability model is applied to learn
the model. However, since these methods focus on
computing the memberships, the formation, dissolution
and lifetime of a community remains unknown. Tensor
decomposition based methods such as [3], [18] model
a network as a three mode tensor and apply low-rank
tensor factorization to obtain R components. Each com-
ponent consists of three vectors named loading vectors.
Two of the loading vectors relate to nodes and are
used to generate a community with binary classification.
The other loading vector contains temporal information
for tracking the community lifetime. However, previous
analysis with tensor decomposition fails to provide a
good model for the dynamic network; more precisely,

the physical interpretations of the vectors related to
nodes and the time are unclear. As a result, they in-
accurately determine the lifetime of a community when
network snapshots are sparse and contain few edges.
They also fail to provide a way to accurately calculate
the lifetime of communities. Some methods merge
snapshots to analyze data at a large time granularity,
but this can result in inaccurate lifetime detection for a
cluster because of the loss in details of the change in a
cluster.

III. OBSERVATION AND INTUITION

In the DBLP dataset we used, there are in total
71195 users, and 18638580 edges, i.e. (u,v) pairs, exist
between them. Each edge consists of several time pairs
(t1,1t2) too. To analyze the data, we did some statistical
analysis on the dataset.

In the dataset, each user has his/her ground truth area
of research. However, the ground truth fails to capture
the temporal evolution of users. To come up with a
better ground truth for temporal distribution between
users, we define our ground truth under the temporal
scale in the following way.

For user v and each research area C;, we count
his/her number of interactions in the data with the users
v € C;. We count the total number of interactions for
u in each year. Using these numbers as the Y-axis and
the time dimension as the X-axis, we can get a curve as
a ground truth curve. We denote this curve as Cur. To
some extent, because a user’s community is reflected
by the frequency he/she interacts with the people in the
community, and the majority of the people’s fields in
every area are quite stable, the curve can reflect every
user’s temporal evolution of his area of research.

We also counted the percentage of people that their
research area changed in the dataset. We defined a
threshold o for the variance of the curve Cur. Intu-
itively, if the variance is larger than o, we will regard
this user changed his research interest in a community.
When using o as 0.5, we find that 17% of the users in
our dataset changed their interest.

These observations imply that building a model for
the temporal evolution of communities, i.e., dynamic
community detection, is highly essential to analyze
temporal networks.

IV. MODELING

In this part we present the framework and generative
process of our model CDOT (Community Detec-
tion Model of Multi-interaction Over Time), which
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Fig. 3: Bipartite affiliation graph. Each user will connect communities with a weight like F,, 4 and a Guassian distribution

with mean value (i, 4 and variance oy 4.

can observe the time information between users and
communities. Fig. 3 illustrates our model. Given a
bipartite graph where the nodes at one side represent
the nodes of the social network G, the nodes on the
other side represent communities C, and the edge has
three parameters, F), u, o, the weight of the affiliation,
mean value and variance of Guassian time distribution
respectively.

A. Model Description

CDOT is based on the idea that communities arise
due to shared group affiliation, and views the whole
network as a result generated by a variant of the
community-affiliation graph model. Same as the origin
one, CDOT models the community affiliation strength
between each pair of node u and community ¢ with
a nonnegative parameter F.(F,. = 0 means node u
is definitely not affiliated to community c.) However,
CDOT also aim to detect P,.(t) which is a Guassian
distribution between node u and community ¢ over
time t, so we consider that F,.P,. is the community
affiliation strength between node u and community c at
time t.

We consider the input interaction network as a graph
G(V,E) where V is a set of U users and E is a set of
edges associated with two time stamps ¢; and 5.

A directed edge (u,t1,v,t2) means the interaction
between user u and v and ¢; belongs to u and ¢9 belongs
to v, and there may be multiple edges between a pair
of nodes, which means there are several interactions
between them. Take dblp as an example, if one person
u publish a paper at time ¢; and the person v cites it at
time t9, then they will have one edge between them.

To generate a link (u(t1),v(t2)) with probability

p(u, t1,v,t2), we define that:

K
p(’u‘v v, t1, t2) =1- eXP(— Z FucPuc(tl)Fchvc(tQ))
c=0
1 (tl - Huc)z
uc - - 1
Puclts) =———exp(— e m
K
H :ZFucPuc(tl)Fchvc(tZ)
c=0

The process in Eq.1 suggests the possibility of node
u in the time ¢; connects node v in the time ¢ty within
each community. There will be three parameter between
node u and community c¢: Fyc, fbyc, Oue, Where Fy.
denotes the total strength between them, i, and o, are
the mean and variance value of Gaussian distribution,
where (. denotes the maximum likelihood time of
node u in the community ¢, and o, evaluate if the
person is “temporal” to the community or “stable”,
which means that if o, < ¢ (§ is the threshold of
temporal and stable), he is “temporal”, belongs to the
community at a special short period of time near fi,c. If
ouc>0, he is “stable”, belongs to the community over
a long time.

0-Threshold. As shown in Fig. 4. In the above
we have defined a threshold of o determining if one
node belongs to a community “temporal” or “sta-
ble”, we find that if the o,. satisfy the function that
Pyue(piue)/ Puce(|piue — 5]) > 0.5 it is “temporal”, other-
wise “stable”.

B. Community Detection Over Time

Now we have defined the CDOT model, we ex-
plain how to detect network communities using the
model. Given the interaction network G(V,E), we aim
to detect K communities by fitting the CDOT to the
underlying network G by maximizing the log likelihood
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Fig. 4: 0,4 > §: the node wu is “stable” to community A.
0yA<6: the node v is “temporal” to community A.

U(F,p,0) =log P(G|F, 1, 0):

F,p,6 = arg max!(F, u, o) )
F>0,0>0
where
UFpo)= Y logl—exp(-H)- Y H

(u,v,t1,t2)EE (u,v,t1,t2)€E

where H is defined in E.q(1) As a matter of fact, we will
notice that the second term here is infinity on number,
because the time t is a continuous parameter, and the
time t1,t2 is infinity. We decide to using sampling
method to deal with this problem, sample some negative
edges to be the second term. The detail of implementing
will be explained in the next section.

V. PARAMETER LEARNING

To solve the optimization problem defined in Eq. 2,
we adopt a block coordinate gradient ascent. We first
update the community affiliation strength F;, for each
node with other F,, and u, o fixed, and then update the
mean value of Gaussian distribution in community affil-
iation e, for each node with other y,,. and F| o fixed,
then the variance of Gaussian distribution in community
affiliation o, for each node with other o, and F’ i
fixed, because if we fix the other parameter, then the
problem of updating will become a convex optimization
problem, we solve the following subproblem:

I(Fy

ar%g;ax( ) (4)
where

WF) = Y log(1—exp(—H) - > H

(u,v,t1,t2)EN (u) (u,v,t1,t2) ENegN (u)

®)
where N (u) is a set of edges connecting to node u, and
NegN (u) is a set of Negative edges that we sampled
from the nonexistent edges in origin network G. The
subproblem can be further solved by projected gradient
ascent.

Fus® = max (0, F + ap, V(Fuc)) (6)

where o, is the step size computed by backtracking
line search, and the gradient is:

VIFu)= Y

(v,tg)EN (u)

-

(v,t9)ENegN (u)

exp(—H)

————————Puc(t1)Pyc(t2) F,
1—exp(—H) uc( 1) uc( 2) ve

()]
Puc (tl )Fuc Puu(t2)

Negative edges. Here we will introduce the sampling
method of Negative edges from the origin network G.
We use uniform distribution to sample some nodes and
then to sample some time to be the negative edges,
the number of Negative edges will equal to a definite
ratio of the origin edges. The first reason has mentioned
above, the Negative edges is infinity because time ¢
is a continuous distribution. The second reason is that
in a huge network a node will only have some edges
between several nodes which are close to it or having
high weight in the same community, not all node. If
you consider all node in one community (a big one),
then the number of Negative edges will be too large,
which will make the F,,. as small as possible, even to
zZero.

After the community affiliation matrix F updated,
we fix F and o,update the community time parameter
matrix f:

new

Hye = Max (07 #Zlfl + iy, V(HUC)) (8)

where «,, is computed as a,, and the gradient is:

exp(—H) t1 — Huc
Vi(pue) = ————— 5 FucPoc(t2) Foc Puc(t1) —5—
() = D TR FucPac(t) e Pac (1)

uc

(v,t2)EN (u)

>

(v,t2)ENegN (u)

t1 — Huc
FucPuc(t1) Fuc Puc(t2) =—5

)
After updating the community time parameter matrix s,
we fix F and p, update the community time parameter
matrix o:

ore” = max (0,09 + o, V(0ue)) (10)
where
B exp(—H) (t1 = tue)® —
VI(O-UC) = Z mFucPvc(tl’)Fchuc(tl)?

(v,to)EN (u)

-

(v,t9)ENegN (u)

(t1 = tue)® — o2,

3
uc

FucPuc(t1)FoePyc(t2)
(11)

Model Initialization We just use the result of
BIGCLAM to initialize F, and for each node u and
community ¢ whose Fy,.>0 initialize pi,. (the midpoint
of the whole period) and o, = 1.

Determining community membership. To find the
number of communities K, we need to determine if the

2

uc



node belongs to a community. For a “stable” user, we
consider it belongs to the community. For a “temporal”
user, we add a threshold d that if Fy.P(juyc)>0r we
could consider the node u belongs to community c,
where

2]
S, =4/—log(l - ——1 (12)
: ¢ IS Y

and the threshold is derived from the assumption that
if two nodes belong to the same community k, then
the probability of having an link between them through
community k is larger than the backgound edge proba-
bility.

Choose the number of communities. We use the
method to choose the number of communities K. And
we reserve 20% of links for validation and learn the
model parameters with the remaining 80%. The whole
process is included in Algorithm 1.

Algorithm 1 Parameter Learning for CDOT

Input: G(V,E;T): the temporal interaction network;
max;ter: maximum number of iterations;
Output: F: the community affiliation;
p: the mean of Gaussian distribution parameter matrix;
o : the variance of Gaussian distribution parameter
matrix;
1: Determine the number of communities K.
2: Initialize F, p, 0.
3: Calculate V1(j,,) based on Eq.(9)
4: Calculate o, using backtracking line search
5. Update p.,, based on Eq.(8)
6: Calculate Vi(o,) based on Eq.(11)
7
8
9
0

: Calculate o, using backtracking line search
: Update o, based on Eq.(10)

: repeat
1 Sample Negative edges in a definite ratio of origin
edges
11: foru=1,2,...,N do
12: Calculate VI(F,) based on Eq.(7)
13: Calculate o F), using backtracking line search
14: Update F, based on Eq.(6)
15 foru=1,2,....,N do
16: Calculate V1(u,,) based on Eq.(9)
17: Calculate oju,, using backtracking line search
18: Update (1, based on Eq.(8)
19: foru=1,2,....,N do
20: Calculate V(o) based on Eq.(11)
21: Calculate oo, using backtracking line search
22: Update o,, based on Eq.(10)

23: until convergence or max;ter is reached
24: Return parameters F,t, 0.

VI. EVALUATION

We proceed by evaluating the performance of the
CDOT model. We evaluate our model from a number
of different aspects.

A. Convergence of CDOT

1) Scalability: We evaluate the scalability of CDOT
by measuring the running time on the networks of
increasing sizes. We iterate our fitting process until
[(F, p, o) fails to improve much in the last 3 iterations.

2) Quality of solution: The model in our formulation is
not convex, meaning it might not converge to an optimal
solution. To verify that our fitting algorithm does not
suffer too much from local optima, we conduct the fol-
lowing experiment on synthetic networks. We generated
100 synthetic networks. For each of these networks, we
then fit CDOT using 10 different random starting points
and attempt to recover the true community affiliations.

B. Accuracy of Community Detection

In this section, we ignore the time evolution, and
investigate the values of Fi., u € V and ¢ € C. The
reason why we can ignore time evolution here is that
due to the fact that F,. plays the major role in determin-
ing the extent to which a user belongs to a community,
because the time dimension will always integrate to 1,
having no influence on the overall strength.

We have the ground truth communities for each user.
In particular, in our dataset of scholars, we know which
areas of research each scholar belongs to. This allows
us to quantify the accuracy of community detection
methods by evaluating the level of correspondence
between detected and ground-truth communities.

1) Experimental Setup: We are given an unlabeled
undirected net- work G (with known ground-truth
communities C*) we aim to discover communities C
such that discovered communities C closely match the
ground-truth communities C*.

Even though our algorithm can process the large
network dataset, all the baseline methods do not scale to
networks of such size. To allow for comparison between
our and the baseline methods we use the following
evaluation scenario where the goal is to obtain a large
set of relatively small subnetworks with overlapping
community structure. To obtain one such subnetwork
we pick a random node u in the given graph G that
belongs to at least two communities. We then take the
subnetwork to be the induced subgraph of G consisting
of all the nodes that share at least one ground-truth
community membership with u. In our experiments we
created 500 different subnetworks for each of the six
datasets.

2) Baselines: For baselines we choose three most
prominent overlapping community detection methods:



Link clustering (LC) [21], Clique Percolation Method
(CPM) [22], and the Mixed-Membership Stochastic
Block Model (MMSB) [23]. These methods have a
number of parameters that need to be set. For CPM, we
set the clique size k = 5 since the number of communi-
ties discovered by CPM with k = 5 best approximates
the true number of communities. For MMSB, we have
to set the number of communities K as an input param-
eter. We use the Bayes Information Criterion to choose
K. While we require hard community memberships,
MMSB returns stochastic node memberships to each
of the K communities. Thus, we assign a node to a
community if the corresponding stochastic membership
is non-zero. We also considered Infomap [24], which is
the-state-of-the-art non-overlapping community detec-
tion method. We omit the results as the performance of
the method was not competitive.

3) Evaluation Metrics: The availability of ground-
truth communities allows us to quantitatively evaluate
the performance of community detection algorithm.
Without ground-truth such evaluation is simply not
possible. For evaluation, we use metrics that quantify
the level of correspondence between the detected and
the ground-truth communities. Given a network G(V,
E), we consider a set of ground truth communities
C* and a set of detected communities C' where each
ground-truth community C; € C* and each detected
community C; € C is defined by a set of its member
nodes. To quantify the level of correspondence of C to
C* we consider:

1) Average F1 score. To compute the F1 score, we
need to determine which C; € C* corresponds
to which C’Z € C. We define Fl score to be
the average of the Fl-score of the best-matching
ground-truth community to each detected commu-
nity, and the F1-score of the best-matching detected
community to each ground-truth community:

1 1 N 1 N
2 e > F‘(chb<n)+'ﬁi'j£: F1(Cy), Ci)
ciec ¢,ec

13)
where the best matching g and g’ is defined as

follows:
g(i) = argmin F1(C;, C;) (14)
J
g'(i) = argmin F1(C;, C;) (15)

J

and F'1(C;, C;(i)) is the harmonic mean of Preci-
sion and Recall.

2) Omega Index [25] is the accuracy on estimating
the number of communities that each pair of nodes
shares:

1 N
W Z 1{|Cuv| = ‘Cuv‘}

u,veV

(16)

where CY, is the set of ground-truth communities
that v and v share and C;w is the set of detected
communities that they share.

3) Normalized Mutual Information adopts the crite-
rion used in information theory to compare the de-
tected communities and the ground-truth communi-
ties. Normalized Mutual Information [26] has been
proposed as a performance metric for community
detection.

4) Accuracy in the number of communities is the
relative accuracy between the detected and the true
number of communities:

et =il
2|C*|

For all metrics higher values mean more accurately

detected communities, i.e. detected node commu-

nity memberships better correspond to ground-truth
node community memberships. Maximum value of

1 is obtained when the detected communities per-

fectly correspond to the ground-truth communities.

a7

C. Accuracy of Time Modeling

In this section, we investigate the accuracy of the
time model in our model. We first illustrate our evalu-
ation metric, and then introduce our results.

1) Ground truth: The relationship of each user to each
community is characterized by Fyc, 0yuc, thye. It 1s a
Gaussian distribution. We will compare this distribution
to the ground truth.

The ground truth is constructed in the following way.
As shown in the previous section, for each community
C;, we can map it to a ground truth community C;. For
user u, we count his/her number of interactions in the
data with the users v € (;. We count the total number
of interactions for u in each year. Thus, we can get a
curve as a ground truth curve. We denote this curve as

Cur.

2) Evaluation metric: We compare our Gaussian dis-
tribution curve with the ground truth curve Cur. To
quantify this, we use the Pearson correlation coefficient.

VII. CONCLUSION

We propose a direct model with normal distribution
to first represent the temporal factors that the strength



of the membership in temporal social networks and then
to detect dynamic communities. Both observation and
experiment validate that the normal distribution is a
great choice to approximate the real distribution. Our
model increases only a very small number of parameters
than other tensor decomposition based methods. While
it achieves a substantial improvements than the baseline
methods.
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