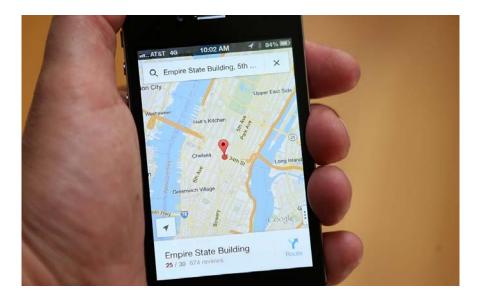
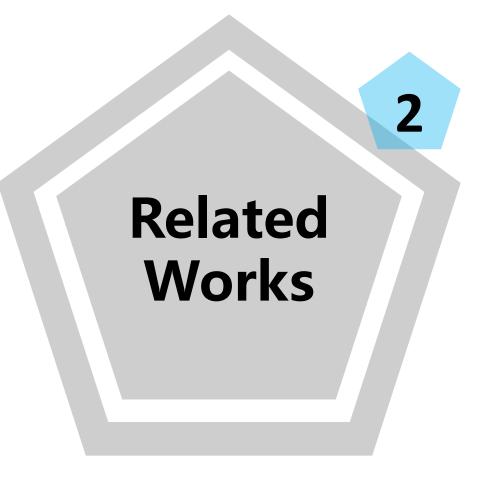

WiFi-Based Indoor Positioning System

Xutong Lu

Research Background

Related Works


Future Works



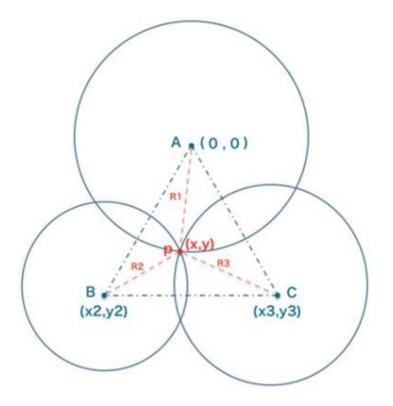
What is Indoor Localization?

Why we need it?

Related Works -- A Widely Used Method

Received Signal Strength (RSS) Value & Log Distance Path Loss (LDPL) Model

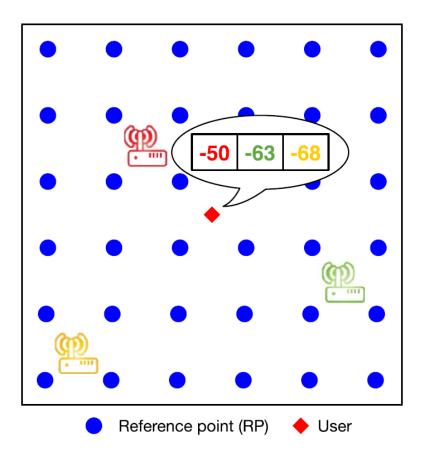
$$PL \ = P_{Tx_{dBm}} - P_{Rx_{dBm}} \ = \ PL_0 \ + \ 10\gamma \ \log_{10} rac{d}{d_0} \ + \ X_g$$


- Given PLO, dO and γ, the RSS measurement PL can be converted into the distance d using the LDPL model.
- **PLO** is the path loss at the reference distance **dO**.
- Xg is a Gaussain random variable with zero mean.

Related Works -- A Widely Used Method

Triangular Positioning

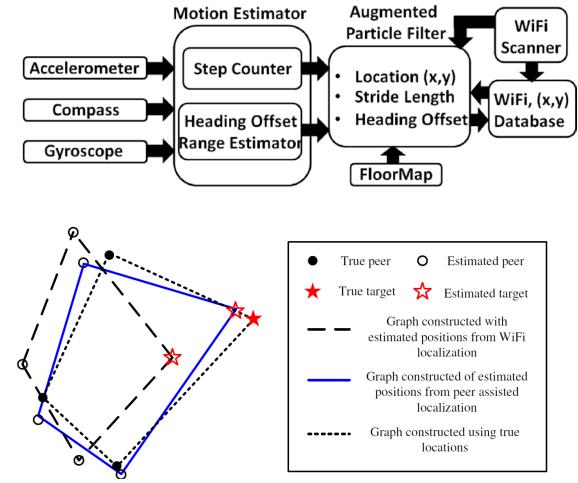
• By LDPL model, if we recive at least three RSSIs, we can calculate the user's location.


• Because of the Gaussian noise, we cannot always find the user's location accuratly.

Related Works -- Some Other Methods

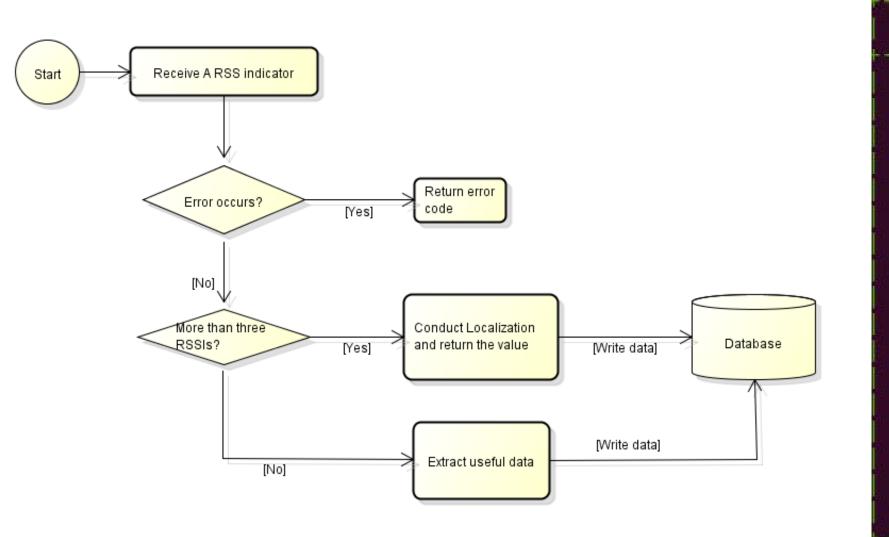
Fingerprinting-based Location Method

- Offline phase: Many site surveys are conducted to build an RSSI database.
- Online phase: User samples an RSSI vector at it's position and send it to the server, sever returns the location to the user.


Related Works -- Some Other Methods

Zee System

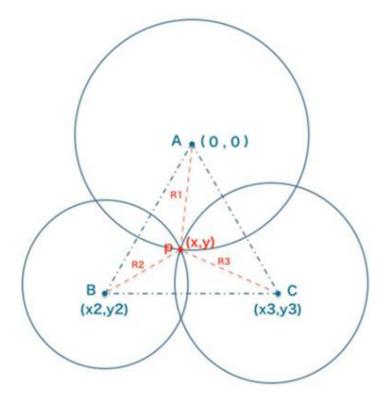
- Ease the offline phase by make every user an RSSI data collector
- Use Augmented Particle Filter to estimate the trajectory with high accuracy


Peer Assisted Location

- Users' devices broadcast special audio signals, thus we can calculate the distance between the users by TOA.
- Location accuracy is improved by additonal distance infomation.

Our System -- The Architecture

Tables_in_foxconn BLE Lyy account anchor books invitation code locrecord mapdb position_history rho_pos **FSS DOS** rssi. rssihis rssitable tempo users wifi_name

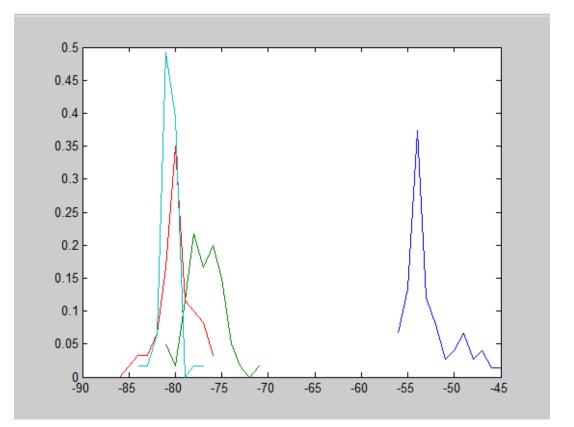


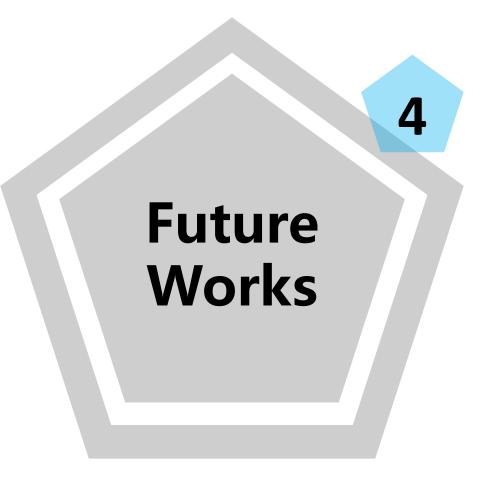
LDPL model with triangular positioning method

$$PL \ = P_{Tx_{dBm}} - P_{Rx_{dBm}} \ = \ PL_0 \ + \ 10\gamma \ \log_{10} rac{d}{d_0} \ + \ X_g$$

1. RSS threshold for localization

2. Kalman filter





Use Kalman Filter to modify the RSS value to improve the accuracy.

Predicte_rssi = last_est + kg*(rssi-last_est)

• Pressure Test

• Code refactoring, rearrangement of database

Pressure Test

Basic Advanced	
Web服务器	
协议: 服务器名称或IP: 202.120.36.29	端口号: 5000
HTTP请求	
方法: POST ▼ 路径: /import_inf/	Content encoding:
_ 自动貨定向 ✔ 跟随貨定向 ✔ Use KeepAlive _ Use multipart/form-data for POST _ Browser-compatible headers	
Parameters Body Data Files Upload	
1⊡{"eui":"0015580002400868",	▲
<pre>2 "time":"\${time(yyyy-MM-dd HH:mm:ss,)}",</pre>	
3 "value": [{"mac":"123b6a1a9b01","rssi":"bb"}] 4 }	

Pressure Test

200	22:06:44.935 线程组 3-235	HTTP请求	3204	8	2760	0	0	0
201	22:06:44.943 线程组 3-355	HTTP请求	3196	8	2760	0	0	0
202	22:06:44.933 线程组 3-465	HTTP请求	3208	8	2760	0	0	0
203	22:06:44.955 线程组 3-396	HTTP请求	3186	8	2760	0	0	0
204	22:06:44.929 线程组 3-405	HTTP请求	3212	8	2760	0	0	0
205	22:06:44.932 线程组 3-453	HTTP请求	3210	8	2760	0	0	0
206	22:06:44.951 线程组 3-360	HTTP请求	3191	8	2760	0	0	0
207	22:06:44.451 线程组 3-115	HTTP请求	3692	0	285	0	3692	0
208	22:06:44.435 线程组 3-174	HTTP请求	3709	0	285	0	3709	0
209	22:06:44.435 线程组 3-166	HTTP请求	3724	0	285	0	3724	0
210	22:06:44.440 线程组 3-201	HTTP请求	3752	0	285	0	3752	0
211	22:06:44.456 线程组 3-111	HTTP请求	3753	0	285	0	3753	0
212	22:06:44.445 线程组 3-192	HTTP请求	3787	0	285	0	3787	0
213	22:06:44.438 线程组 3-186	HTTP请求	3802	0	285	0	3802	0
214	22:06:44.428 线程组 3-175	HTTP请求	3826	0	285	0	3826	0
215	22:06:44.457 线程组 3-150	HTTP请求	3803	0	285	0	3803	0
216	22:06:44.450 线程组 3-103	HTTP请求	3815	0	285	0	3815	0
217	22:06:44.414 线程组 3-199	HTTP请求	3857	0	285	0	3857	0
218	22:06:44.465 <mark>线程组 3-15</mark> 9	HTTP请求	3809	0	285	0	3809	0
219	22:06:44.439 线程组 3-155	HTTP请求	3850	0	285	0	3850	0
220	22:06:44.499 线程组 3-250	HTTP请求	3796	0	285	0	3796	0
		le commentation (A		100		-		-

The Bottlenecks: 1. Connections to DB 2. Disk read/write 3. CPU

- A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen. Zee: Zero-effort crowdsourcing for indoor localization. In *Proceedings of the 18th annual international conference on Mobile computing and networking*, pages 293–304. ACM, 2012.
- H. Liu, Y. Gan, J. Yang, S. Sidhom, Y. Wang, Y. Chen, and F. Ye. Push the limit of wifi based localization for smartphones. In *Proceedings of the 18th annual international conference on Mobile computing and networking*, pages 305–316. ACM, 2012.
- S. He and S.-H. G. Chan. Wi-fi fingerprint-based indoor positioning: Recent advances and comparisons. *IEEE Communications Surveys & Tutorials*, 18(1):466–490, 2016.
- K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan. Indoor localization without the pain. In *Proceedings of the sixteenth annual international conference on Mobile computing and networking*, pages 173–184. ACM, 2010.

