Incentivize Online Multi-class Crowd Labeling
under Budget Constraint
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The Crowdsourcing Model

* The platform publicizes a set M = {t1, t2,-, tm} of multi-class labeling tasks.

* And there is a set of N workers, each one has an arrival time ai € {1, T},

and a departure time di € {1,-, T}, ; di = al. There are a set of labels K =
{1,, K} can be labeled to the tasks.

* Each worker | replies with a set ©) of kj bids, each of which iIs a task-price
pair kj = (tj; b))

* When a user arrives, the crowdsourcer must decide whether to buy the
service of this user, and If so, at what price, before it departs.

* Each winning bid Is paid an amount of money pi by the platform.



The Crowdsourcing Model
Aggregating Labels from workers

Definition 1(Worker’s Utility). The utility of a worker is
defined as the difference between the total payment it receives A soft label set 2; = {wg, w1, ...,wx_1}, wp € [0,1] is used

and his total cost. to measure the labeling difficulty of task ¢;. wy. is defined as
the probability that the task t; is labeled as label k™ by a
o _ k (4K i
Uy = Z (p(07) — c(t5)) (1) perfectly reliable worker.
Q?E@W
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Pr(Yi; = y|02:) = ] [ (wr)™
We denote a labeling answer from a crowd worker j to k=1
task t; as y;; € {1,2,3,...,K}. Bach answer y;; has a
corresponding vector A(aq,as,..,arx ). Only one element in
A equals to ’1’, while others equals to "0’, Where a;, = 1
represents worker j attach label 'k’ (k € {1,2,3,...,K}) to p(wi|Yi; = y) x Pr(Yi; = ylw;) - p(w;) (3)
this task. The platform view y;; as a random variable Y;;
before the inquiry.

Observing a labeling answer Y;; = y, we can calculate the
posterior distribution by Bayes’ rule:



The Crowdsourcing Model
Aggregating Labels from workers

A°(al, a9, ..,a%) is the corresponding vector of answer ;.

Thus, if task ¢; receives a; labels of k, the parameter vector
will become @; = {af + a1,a + az,...,a% + ax} and the
posterior will become

p(£2i]y;) = Dir(;) (4)

When we have no prior knowledge about the task, we can
simply set @Y = {1,1,...,1}, so that the prior is a uniform
distribution. The true label z; is inferred in accordance with
the parameter w; ; In the soft label set (2;, which indicates
that E|w; »] > Elw; ] (wi; € 24,1 # k) implies z; = k.



Problem Formulation

Definition 2(PlatForm Utility). Platform utility is defined as
the Kullback-Leibler divergence between the initial distribu-
tion and the final distribution of the soft labels.
N
up(2w) = > KL(p(2)[Ip(ly:)) (8)
i=1

Under a strict budget constraint B, the platform aims to
determine a winning bid set that maximizes its utility in
expectation, 1i.e.

Maximize E[u,(Ow)] s.t. Z p(0) < B 9)
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Online Allocation and Payment Scheme

The marginal value of 9"” at round r 1s defined as the K-L
divergence between p" (€ ) and p"t1(€);) in expectation.

v(¥5:7) = By, [KL(p" ()] [P (%))] (13)

Once 6’;‘ is selected into Oy, ’U(H;-C) is used instead of
’U(Qﬁ" 1) to simplify notations. The total value of O,y is simply
the sum of all marginal contributions, i.e.

VOw)= > v} (14)
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Multiple-stage sampling accepting process
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First, we divide all of T time steps into (|log>T' | +1) stages:
{1,2, ..., |log2T|, |logsT | +1}. The stage i ends at time step
T' = |2i=1T/2llo92T1| Correspondingly, the stage-budget for
the i-th stage is allocated as B’ = |2'~1B/2L1°92T] | When
a stage 1s over, we add all users who have arrived into the
sample set S’, and compute a density threshold p*. according
to the information of samples and the allocated stage-budget
B’



Algorithm 1: DI-GreedyOnline

Input: budget B, deadline T; prior parameters {a9} M {GV}Y
Output: O,y; V(Oyy); posterior parameters {a] }M,, {57}V,
Initialize: r < 0; Oy, « 0;
(t, T, B, 5", p*,Ow) (L, 31577 om0 € 0)
while £ < T do
Add all bids of new users arriving at time step t to a set of online bids O;
O+ O\ S,
while O # () do
0" = {t;-.bj-} + arg maxyrcor v(6:r);
ifb;- < '!.-‘[H?:)/{}* <B' - ZIEHW p; then
p(0*) -'u(ﬁ_;?')/p*;
Oy — O U {3*};
Observe the labeling answer Y- j+ = 1+ -3
And update the posterior distribution of the task.
else

| p(6%) « 0O;
O+« O\ {0}
Remove all users departing at time step t from O, and add them to S”;
if t = |7"| then
p* + GetDensityThreshold(B’, S');
T « 27", B' « 2B"; 0" + O;
while O' £ () do
0* = {tj+,bj-} + argmaxg cor v(0%;r);
ifb;« < -i!(()_f:?)/p* < B"= ) ico,, P+ p; then
ple*) +— "U(Hl?.)/p*;
if 7 ¢ O,y then
Oy — B U {E—J*};
Observe the labeling answer Y« j- = 17+ -3
And update the posterior distribution of the task.

O O\ {07}

| t+—t+1
Return:O,y; V(O ); {a7 .j;r"_"l;{ﬁj'}j-“’T_l;

GreedyOnline

It consists of two stages:

* The current time step t Is not at
the end of any stage.

* The current time step Is just at the
end of some stage.



Performance Evaluation

5 -
—a— D|-Random, B=100
—e— DI-GreedyOnline, B=30 A
44 | —4— DI-GreedyOnline, B=100
o
8 S/
= 3 A
= Pal
E V
£, Y/
c /
3 /,
D: {:-’5"/
1- ‘Z:fi_./.f‘"""
______:___:._-:-_--_':'_':'."-___/,
o4+=—r—" —T - T
100 200 300 400 500 600

Number of bids

Running Time

DI-RANDOM outperforms the DI-GREEDYONLINE since it
doesn’t do sorting operation. However, DI-GREEDYONLINE
is computational efficient because it runs in polynomial time
and the running time of DI-GREEDYONLINE increases lineally
with the number of bids N, while the budget B doesn’t affect
running time much.
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Platform Utility

Performance Evaluation
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We observe that DI-GREEDYONLINE always outperforms DI-
RANDOM for all budget constraints. As the number of bids /N
reduces to 50, platform utility also decreases, which reveals
that a large amount of bids brings more utility.
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Performance Evaluation
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The results show that our allocation algorithms utilize budget much more efficient

than the random allocation scheme.
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Conclusion

In this paper, we have developed the reverse auction based incentive mechanism to
a more general online scenario. We take into account the difficulty of labeling tasks
and focus on maximizing the utility of the crowdsourcer. We have designed a online
winning bid allocation algorithm DI — GreedyOnline that can be applied to a more
general case where the workers arrive one by one in a random order.
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