Incentivize Online Multi-class Crowd Labeling
under Budget Constraint

1= |EEE 5140309505



Send the labeling
° answer with their cost
Ll g back to platform

A user using
crowdsourcing Select a subset of N as

platform to winner according to their

Ty
_ | . ’n‘ln| o N={12,n}
submit tasks abeling answers 'n‘ .
Ty,
I

A set of labelers

1)
111}
i,

Labelers receive
the tasks and
label them

How to select labelers to achieve better utility?



The Crowdsourcing Model

* The platform publicizes a set M = {t1, t2,-, tm} of multi-class labeling tasks.

* And there is a set of N workers, each one has an arrival time ai € {1, T},

and a departure time di € {1,-, T}, ; di = al. There are a set of labels K =
{1,, K} can be labeled to the tasks.

* Each worker | replies with a set ©) of kj bids, each of which iIs a task-price
pair kj = (tj; b))

* When a user arrives, the crowdsourcer must decide whether to buy the
service of this user, and If so, at what price, before it departs.

* Each winning bid Is paid an amount of money pi by the platform.



The Crowdsourcing Model
Aggregating Labels from workers

Definition 1(Worker’s Utility). The utility of a worker is
defined as the difference between the total payment it receives A soft label set 2; = {wg, w1, ...,wx_1}, wp € [0,1] is used

and his total cost. to measure the labeling difficulty of task ¢;. wy. is defined as
the probability that the task t; is labeled as label k™ by a
o _ k (4K i
Uy = Z (p(07) — c(t5)) (1) perfectly reliable worker.
Q?E@W

K

Pr(Yi; = y|02:) = ] [ (wr)™
We denote a labeling answer from a crowd worker j to k=1
task t; as y;; € {1,2,3,...,K}. Bach answer y;; has a
corresponding vector A(aq,as,..,arx ). Only one element in
A equals to ’1’, while others equals to "0’, Where a;, = 1
represents worker j attach label 'k’ (k € {1,2,3,...,K}) to p(wi|Yi; = y) x Pr(Yi; = ylw;) - p(w;) (3)
this task. The platform view y;; as a random variable Y;;
before the inquiry.

Observing a labeling answer Y;; = y, we can calculate the
posterior distribution by Bayes’ rule:



The Crowdsourcing Model
Aggregating Labels from workers

A°(al, a9, ..,a%) is the corresponding vector of answer ;.

Thus, if task ¢; receives a; labels of k, the parameter vector
will become @; = {af + a1,a + az,...,a% + ax} and the
posterior will become

p(£2i]y;) = Dir(;) (4)

When we have no prior knowledge about the task, we can
simply set @Y = {1,1,...,1}, so that the prior is a uniform
distribution. The true label z; is inferred in accordance with
the parameter w; ; In the soft label set (2;, which indicates
that E|w; »] > Elw; ] (wi; € 24,1 # k) implies z; = k.



Problem Formulation

Definition 2(PlatForm Utility). Platform utility is defined as
the Kullback-Leibler divergence between the initial distribu-
tion and the final distribution of the soft labels.
N
up(2w) = > KL(p(2)[Ip(ly:)) (8)
i=1

Under a strict budget constraint B, the platform aims to
determine a winning bid set that maximizes its utility in
expectation, 1i.e.

Maximize E[u,(Ow)] s.t. Z p(0) < B 9)

0eBWw



Online Allocation and Payment Scheme

The marginal value of 9"” at round r 1s defined as the K-L
divergence between p" (€ ) and p"t1(€);) in expectation.

v(¥5:7) = By, [KL(p" ()] [P (%))] (13)

Once 6’;‘ is selected into Oy, ’U(H;-C) is used instead of
’U(Qﬁ" 1) to simplify notations. The total value of O,y is simply
the sum of all marginal contributions, i.e.

VOw)= > v} (14)

9$E@W



Multiple-stage sampling accepting process

giﬁl}%(,—l | Sta}g(c_2 Sia_%c 3 | Su%%c 4

- N e N N 7-8

| | | I <5
=1 =2 =4 =8

First, we divide all of T time steps into (|log>T' | +1) stages:
{1,2, ..., |log2T|, |logsT | +1}. The stage i ends at time step
T' = |2i=1T/2llo92T1| Correspondingly, the stage-budget for
the i-th stage is allocated as B’ = |2'~1B/2L1°92T] | When
a stage 1s over, we add all users who have arrived into the
sample set S’, and compute a density threshold p*. according
to the information of samples and the allocated stage-budget
B’



Algorithm 1: DI-GreedyOnline

Input: budget B, deadline T; prior parameters {a9} M {GV}Y
Output: O,y; V(Oyy); posterior parameters {a] }M,, {57}V,
Initialize: r < 0; Oy, « 0;
(t, T, B, 5", p*,Ow) (L, 31577 om0 € 0)
while £ < T do
Add all bids of new users arriving at time step t to a set of online bids O;
O+ O\ S,
while O # () do
0" = {t;-.bj-} + arg maxyrcor v(6:r);
ifb;- < '!.-‘[H?:)/{}* <B' - ZIEHW p; then
p(0*) -'u(ﬁ_;?')/p*;
Oy — O U {3*};
Observe the labeling answer Y- j+ = 1+ -3
And update the posterior distribution of the task.
else

| p(6%) « 0O;
O+« O\ {0}
Remove all users departing at time step t from O, and add them to S”;
if t = |7"| then
p* + GetDensityThreshold(B’, S');
T « 27", B' « 2B"; 0" + O;
while O' £ () do
0* = {tj+,bj-} + argmaxg cor v(0%;r);
ifb;« < -i!(()_f:?)/p* < B"= ) ico,, P+ p; then
ple*) +— "U(Hl?.)/p*;
if 7 ¢ O,y then
Oy — B U {E—J*};
Observe the labeling answer Y« j- = 17+ -3
And update the posterior distribution of the task.

O O\ {07}

| t+—t+1
Return:O,y; V(O ); {a7 .j;r"_"l;{ﬁj'}j-“’T_l;

GreedyOnline

It consists of two stages:

* The current time step t Is not at
the end of any stage.

* The current time step Is just at the
end of some stage.



Performance Evaluation

5 -
—a— D|-Random, B=100
—e— DI-GreedyOnline, B=30 A
44 | —4— DI-GreedyOnline, B=100
o
8 S/
= 3 A
= Pal
E V
£, Y/
c /
3 /,
D: {:-’5"/
1- ‘Z:fi_./.f‘"""
______:___:._-:-_--_':'_':'."-___/,
o4+=—r—" —T - T
100 200 300 400 500 600

Number of bids

Running Time

DI-RANDOM outperforms the DI-GREEDYONLINE since it
doesn’t do sorting operation. However, DI-GREEDYONLINE
is computational efficient because it runs in polynomial time
and the running time of DI-GREEDYONLINE increases lineally
with the number of bids N, while the budget B doesn’t affect
running time much.

10



Platform Utility

Performance Evaluation

(o) o o - — —
L D o o N £
| | | | | |

o
(&}
| L

—a— DI-GreedyOnline, 50 Bids
—&— DI|-GreedyOnline, 200 Bids
—a— D|-Random, 200 Bids

0

| ! | ! | ! |
100 200 300 400
Budget

T
500

|
600

Plattorm Utility

We observe that DI-GREEDYONLINE always outperforms DI-
RANDOM for all budget constraints. As the number of bids /N
reduces to 50, platform utility also decreases, which reveals
that a large amount of bids brings more utility.

11



Performance Evaluation

a8]
o

1.0 5
09:
DBLrn““H
0.7 4
-ﬁ-06:
05:
0.4+

0.34

0.2

—a— DI-Random
—o— DI-GreedyOnline

Budget Utilization

50

! I v I ' I v I ! 1 ' J ' !
100 150 200 250 300 350 400

Budget

The results show that our allocation algorithms utilize budget much more efficient

than the random allocation scheme.
12



Conclusion

In this paper, we have developed the reverse auction based incentive mechanism to
a more general online scenario. We take into account the difficulty of labeling tasks
and focus on maximizing the utility of the crowdsourcer. We have designed a online
winning bid allocation algorithm DI — GreedyOnline that can be applied to a more
general case where the workers arrive one by one in a random order.

13



Thank you



