
Wireless Communications and Mobile Internet

Project Report

廖一鸣 5140219375

Mail：lglayama@sjtu.edu.cn

1. Abstract

 This report mainly introduce the work I have done in 2016 spring semester for the course

project—AceMap: Academic Information System. Specifically, my project is main focus on the

optimization of the speed of queries to our database, which is significant for the user experience

of our system. Since there some delay during the display of our system, our group try to use

distributed tools based on different database to speed up for our system. Window function based

on PostgreSQL is a very powerful method to accelerate the process of queries, which I use to

optimize AceMap and finish my course project. The results show that our system will be more

efficient based on the window function in PostgreSQL database.

2. Introduction

 AceMap is a novel academic information system put forward by professor Xinbing Wang. The

primary feature of our system is the academic maps, showing the relationship between the

academic information in the database. Meanwhile, The website has already online with its

excellent search function. Users can type in any academic keywords of their interest and get related

search results, including papers, authors, affiliations, fields of study and other academic

information.

 In this semester, my teammates and I focus on the performance of our system for the query

to our database. Our database, which is Microsoft ”mag” database, contains more than 100 million

papers. More than 22000 topics have their unique paper maps in our system and More than 2200

affiliations have their unique author maps in our system. Sometimes, the response speed of our

system is relatively slow so that it has a bad influence on the user experience. So we need to deal

with this problem to make our system faster and more robust.

 After the optimization of my project, the response speed of our system improves in a

surprising way. Different queries have different improvements. In other word, each query increases

in various degrees.

 The following part of this report is organized by the process how I finish the optimization of

the query. I will introduce the window function and PostgreSQL first. Then I will introduce the

process of the conversion between the MYSQL and PostgreSQL. Moreover, I will elaborate how to

rewrite the query with window function.

3. PostgreSQL and window function

 PostgreSQL is an object-relational database with additional "object" features – with an

emphasis on extensibility and standards compliance. As a database server, its primary functions

are to store data securely and return that data in response to requests from other software

applications. It can handle workloads ranging from small single-machine applications to large

Internet-facing applications (or for data warehousing) with many concurrent user. Comparing to

the MYSQL, PostgreSQL is more advanced in some ways, such as the support for the array and json,

the scripts in server side like Python and R. And PostgreSQL have some advanced characteristic to

improve the database’s performance like Window function. In addition, PostgreSQL is a open-

source database which is free for us.

 At present, our system use MySQL to store the data. In most time, the performance is good

while querying for tremendous data at the same time may come across the situation that the

website have apparent delay. So I try to convert the database from MySQL to PostgreSQL to see

whether the performance will improve.

 A window function performs a calculation across a set of table rows that are somehow related

to the current row. This is comparable to the type of calculation that can be done with an aggregate

function. But unlike regular aggregate functions, use of a window function does not cause rows to

become grouped into a single output row — the rows retain their separate identities.

 The query of the users of our system always need search for massive data, so we try to use

window function to rewrite the SQL statement now so that improve the speed of response.

4. Conversion from MySQL to PostgreSQL

 The first step of my project is convert the database from MySQL to PostgreSQL. Then we can

test the performance on the two different database. First, we should consider about the difference

of the data type between the two databases. Since there is not a one-to-one mapping between

MySQL and PostgreSQL data types, listed below are the conversions that are applied.

MySQL PostgreSQL

char character

varchar character varying

tinytext text

mediumtext text

text text

longtext text

tinyblob bytea

mediumblob bytea

blob bytea

longblob bytea

binary bytea

varbinary bytea

MySQL PostgreSQL

bit bit varying

tinyint smallint

tinyint

unsigned
smallint

smallint smallint

smallint

unsigned
integer

mediumint integer

mediumint

unsigned
integer

int integer

 Then I use a python script to accomplish the process that read data from MySQL and store

data to the PostgreSQL. I establish a new PostgreSQL on our server first:

Then I modify the configuration file to connect the MySQL and PostgreSQL like this:

 Then the script can take data from an MySQL server and write a PostgreSQL compatable

dump file. Then I can use the dump file to store data to the PostgreSQL database:

 After that, I finish the conversion from MySQL to PostgreSQL.

5. Rewrite SQL query with window function

 After the conversion of our database, we need use window function to improve the response

speed of our system further. Window functions belong to a type of function known as a ‘set

function’, which means a function that applies to a set of rows. The word ‘window’ is used to refer

to the set of rows that the function works on.

 The SQL statement we used now is find the specific author first, then try to do more specific

query just like calculate· the citation of one author. Then I use the window function to rewrite the

query. With the window function, the new query focus on the specific tasks with a large number

of author. For some special query, window function can obviously improve the speed of response.

I will give the examples to you show how I modify the SQL statement with window function.

 Example: Find the number of SCI references to an author

Old query: SELECT count(*),SUM(SCICitation) as sum from

 PaperSciReferencesCount INNER JOIN

 (select PaperID from PaperAuthorAffiliations

 where AuthorID = ?) AS TB1

 on PaperSciReferencesCount.PaperReferenceID = TB1.PaperID

New query: SELECT DISTINCT count(*),SUM(SCICitation) over (PARTITION BY

"AuthorID") as sum from "PaperSciReferencesCount" INNER JOIN

"PaperAuthorAffiliations" AS "TB1"

on "PaperSciReferencesCount"."PaperReferenceID" = "TB1"."PaperID"

where "AuthorID"= '?';

 This is a very simple but common query for our system. The application of window function is

the over() clause. With this clause, the statement can perform an aggregate operation against a

user-defined range of rows (the window) and return a detail-level value for each row. So I can

rewrite the SQL statement in a more efficient way.

6. Experiment

 After do these two step to optimize our query. I test the different query respectively on MySQL,

PostgreSQL and window function to see the improvement of my project. The following statement

is used by me for the test.

 (1) Find the number of SCI references to an author

SELECT count(*),SUM(SCICitation) as sum from

 PaperSciReferencesCount INNER JOIN

 (select PaperID from PaperAuthorAffiliations

 where AuthorID = ?) AS TB1

 on PaperSciReferencesCount.PaperReferenceID = TB1.PaperID

 (2) Search for top five collaborators working with the two authors

 SELECT AuthorID,AuthorName from `Authors` NATURAL JOIN

(select count(PaperID) as coCount, AuthorID from PaperAuthorAffiliations

natural join

(select * from (SELECT PaperID from PaperAuthorAffiliations where

AuthorID = ?) as TBMain NATURAL JOIN

(select PaperID from PaperAuthorAffiliations where AuthorID = ?) as TBAsso)

as TB4 where AuthorID != ? and AuthorID != ? group by AuthorID

order by coCount desc limit 5) as TBA

 (3) Search for the maximum of 25 key words for the papers which cite a paper

SELECT FieldsOfStudyID,FieldsOfStudyName,FieldCitation from FieldsOfStudy

INNER JOIN (select FieldOfStudyIDMappedToKeyword,COUNT(*) as FieldCitation

from PaperKeywords INNER JOIN

(select PaperID from PaperReferences where PaperReferenceID = ?) as TB1 on

TB1.PaperID = PaperKeywords.PaperID where `MagProvide`= 1 GROUP by

FieldOfStudyIDMappedToKeyword)

as TB2 on TB2.FieldOfStudyIDMappedToKeyword = FieldsOfStudy.FieldsOfStudyID

order by FieldCitation desc limit 25

(4) Find a joint recommendation to the author of the paper

 SELECT RecomID FROM

(select `PaperID` from `PaperAuthorAffiliations` where `AuthorID` = ?) as tb1

 Natural JOIN `PaperRecommenderList` group by RecomID

 having RecomID not in

 (select `PaperID` from `PaperAuthorAffiliations` where `AuthorID` = ?)

 order by `FutureRank` desc limit 15;

 I get a result of the different query and I draw a picture for the results:

From the result we can find that there different improvement for the different SQL

statement. Thinking about the data involved in different query, we can find that the more data

involved, the better improvement generated. There are also many other factors have effect on

the response speed. So the response speed is not strictly positive correlation with the amount of

data.

In order to show the improvement for the Window function and PostgreSQL, our group

make a demo in our website for the developer of Acemap:

Then we can see the performance of our system for further study and improvement.

7. Conclusion

 Through this course project, I am able to master tools including SQL, python language. I also

learned many details about the database so that I could have deeper understanding about the

database. I also truly experience the big data. This project helps AceMap website to have faster

response to the query from users. Currently our group have successfully solve the problem that

the delay in some pages of our website.

 I would like to thank all the fellows in our database group for helping me during this semester.

Also my group leader Huo Xiaoyang and Luo Xiyi has given me plenty of useful suggestion about

my project. Their helps made it a lot easier for me to accomplish this project.

