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Abstract—Interdisciplinary collaborations have generated huge
impact to society. And the rise of collaborations among different
scientific domains inevitably becomes the trend in scientific
research. The cross-domain scholarly data is the vehicle which
properly portray features of these interdisciplinary collabora-
tions.

Analysing the cross-domain scholarly data helps researchers
better sense the abstract features as well the patterns of interdisci-
plinary collaborations, which has important implications in many
aspects, such as wiser design of scholar recommendation systems,
better evaluation of research communities, more accurate pre-
diction of scientific domain developing trends and etc. However,
due to theoretical and technical difficulties, there have been few
studies that provide a systematic and practical understanding of
cross-domain scholarly data at scale. Particularly, many papers
which study the cross-domain recommendation systems make
modeling assumptions without solid experimental observations
in real-world scholarly data.

We bridge this gap using real scholarly datasets – Microsoft A-
cademic Graph [?] with 126 million papers collected from around
50 thousand domains. By empirical exploration, we observe
novel features that belong exclusively to cross-domain scholarly
data, such as four power-law distributions in the relationship
between scientific papers and papers’ domains, the peak influence
cross-domain collaborations add to papers’ quality, i.e., citation.
We also observe interesting evolving patterns among different
domains’ co-paper relationship, and further make case study
in the domain of ”Data-mining” after adding time information.
Moreover, we dig into the papers’ citation structure in the
perspective of cross-domain distribution, and more accurately
study papers’ cross-domain performance or influence by giving
the distance between different domains to quatify the domains’
closeness relationship.

Based on our empirical observations, we also make efforts in
proposing novel models that can well reproduce the properties or
patterns we discovered. To illustrate, we design a model of cross-
domain power-law (MCP) to captures the power-law distributions
in cross-domain data. And we reproduce the peak influence by the
help of guassian distribution. Moreover, through both theoretical
analysis and empirical evaluations, we demonstrate that our
models can accurately reproduce the features as well the patterns
we probe in real-world dataset.

I. INTRODUCTION

Studying properties of scholarly networks and getting in-
sight of the scholarly data have important implications. De-
spite the importance of scholarly networks in many kinds
of applications, there have been few studies at observation
of relationship among different scientific domains, as well
the affiliation domains add to paper which changes papers
influential factor, due to the paucity of big data and the
difficulty of big data analysis.

In this paper, we bridge this gap by implementing elaborate
data-mining methods on big scholarly data.

First of all, we properly study a database – Microsoft
Academic Graph (MAG) of large-scale which thoroughly
explores the multi-hierarchy of different domains and extract
the scholarly data about cross-domain properties.

Based on the massive data, on the one hand, we probe
the subordination among domains, and further study the
boundaries among domains as well the evolving pattern of
domains relationship. On other hand, we explore the paper’s
cross-domain performance, which includes its membership
relation based on domains paper belong to and its cross-
domain citation distribution.

In the domain-oriented perspective, we firstly observe the
domain’s number power-law distribution with its papers num-
ber as well its subdomain number. And we also study the
closeness among different domains, i.e. using co-paper’s ratio
to describe the relationship between different domain. More-
over, we add time information to the relationship we try to
explore, by mining paper’s publication date, and thus find
interesting evolving pattern in domains’ relationship.

From the paper-oriented or literature-oriented perspective,
we explore the paper’s cross-domain performance, which in-
cludes its membership relation based on domains paper belong
to and its cross-domain citation distribution. We firstly get
the power-law distributed paper number with the number of
domains paper belongs to. And then, we based on paper’s
membership relation with domains it belongs to, study paper’s
citation distribution. And surprisingly we get a ”peak” distribu-
tion – the paper’s citation number is likely to get a maximum
value when paper’s domain number comes to a certain amount.
Further, we dig into the paper’s citation, dividing these citation
into four parts according to the network structure of paper’s
membership hierarchy, and thus know the decreasing citing
possiblity with the increasing cross-domain distance, which
complies with our intuitive thinking.

And in this part, we implement elaborate visualization
methods to clearly present our observation.

Further, based on our observation on real world database,
we purpose theoretical model to explain and simulate our
observing result. And we also explore the substaintial reason
behind the data pattern.

In general, this work helps to judge or explain the relation
and the boundary between different domains. For instance,
we can explore the similarity and distinction of Literature
and Mathematic, two domains largely different from each
other in common sense. Moreover, when adding publication
date as time slot, we can explore the evolving pattern of the
domains relationship. Besides, according to the performance
of literatures cross-domain studying, the literatures depth and



breadth can be well measured by properties of domains which
they belong to and their cross-domain citation distribution,
which affords researchers more accurate browsing results
when they want to wade into a new scientific field.

II. RELATED WORK

Related work

III. OBSERVATION AND VISUALIZATION

In this part, by the help of data-mining methods, we
properly explore the cross-domain scholarly data in real world
big scholarly data, and discover several stimulating results.
Further, we implement visualization to our discoveries to make
our result easy to view.

We make our observation both on domain-oriented aspect
and paper-oriented or literature-oriented aspect. In the do-
main’s perspective, we observe firstly the domain’s number
power-law distribution with its papers number as well its
subdomain number. And we also study the closeness among
different domains, i.e. using co-paper’s ratio to describe the
relationship between different domain. Moreover, we add time
information to the relationship we try to explore, by mining
paper’s publication date, and thus find interesting evolving
pattern in domains’ relationship.

From the paper’s perspective, we explore the paper’s cross-
domain performance, which includes its membership relation
based on domains paper belong to and its cross-domain
citation distribution. We firstly get the power-law distributed
paper number with the number of domains paper belongs
to. And then, we based on paper’s membership relation with
domains it belongs to, study paper’s citation distribution. And
surprisingly we get a ”peak” distribution – the paper’s citation
number is likely to get a maximum value when paper’s domain
number comes to a certain amount. Further, we dig into
the paper’s citation, dividing these citation into four parts
according to the network structure of paper’s membership
hierarchy, and thus know the decreasing citing possiblity with
the increasing cross-domain distance, which complies with our
intuitive thinking. And we also studies successor phenomenon
...

A. Brief Introduction and Study For MAG

We give our experiments based on Microsoft Academic
Graph (MAG) which is an official and authoritative scholarly
dataset containing massive scholarly information of publi-
cations such as titles, authors, conferences, fields of study
and citations. Around 126 million papers in 19 subjects are
included in this database and the published years of them
vary from 1800 to 2016. To prove that our experiments
are representative and persuasive in scholarly networks, we
observe in different fields.

As we study the cross-domain performance of scholarly
data, we mainly launch research on the scholarly data related
with fields of study, i.e. domains in MAG. And the fields
in MAG can be divided into four layers and we call them
from L0, L1, L2, L3, where layer with lower number, which
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Fig. 1. Domain Hierarchy Structue in MAG

represents bigger scientific domain contains the layer with
higher number, i.e. smaller scientific domain of study. E.g., we
get a domain labeled with L0 layer in MAG called ”Computer
Science”, which contains several domains labeled by L1 layers
according to the MAG’s hierarchy table, including ”Arti-
ficial Intelligence”, ”Database”, ”Data-mining”, ”Computer
Hardware”, and etc. And ”Data-mining” can contains several
domains with lower layer label such as ” Big data” in L2 Layer
and ”K-optimal pattern discovery” in L3 layer. Moreover, one
thing is supposed to be noticed is that the hierarchy in MAG
is heterogeneous which means the domain of L1 layer can
directly contains or relates domains of L2 and L3 layers.

In figure 1, hierarchy example of MAG dataset can be
viewed. This figure illustrates a part of the hierarchy struct
of the domain ”Computer Science”. We pick up several nodes
and mark their names besides the nodes. As can be seen from
the figure, the lower the layer is, the more specifically the
domain is.

B. Domain-oriented Exploration

Power-law distributed degree is a common feature of social
networks, which is also well studied by many existing litera-
tures. And XXX’s work also find the power-law distribution
also exists in scholarly network – using network structure to
present the scholarly data. Stimulated by this result, when we
studying domains’ information in scholarly data, we also get
power-law distribution. In figure 2, it is clearly can be viewed
that there exists two kind of power-law distribution.

First is power-law distributed domains number with papers’
count in these domains, as shown in the figure 2.a. And second
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Fig. 2. Domain-oriented power-law distribution
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Fig. 3. The paper number distribution among target domains. Where are two
domains in L3 layer, called ”Data Analysis” and ”Data Modeling”.

is power-law distribution bwtween domains number with their
sub-domains’ count, which is drawn in figure 2.b.

We intuitively use co-paper’s number among different do-
mains to describe the correlation of domains, i.e. the closeness
of relationships. Though behind this papers, a more complex
networking topology, i.e. the paper’s reference and citation
network might include useful information for judging close-
ness between different domains, we originally use the number
of co-papers to verify the correlation of those domains as co-
paper is the bridge which levels up the gap among different
domains and the number of co-paper, the basic and essential
feature of co-papers can linearly evaluate the closeness among
domains.

First of all, we simply visualize this relationship in figure
3. And we can clearly find that different domains in fact
have many co-papers. And therefore we can use the co-paper
information to quantify the relationship between different
domains.

Besides, we can add the time information by the data in
MAG’s paper publication time table to further explore the
evolving pattern of the relationship among different domains.

What we do is to label every paper of two domains by their
publication date, and thus co-papers are also labeled by time
info. After that, we calculate the evolving co-paper ratio of
one specific domain vs other different domains. And by that,
we can find the changing relationship among one domain and
other different domains. For instance, in figure 4, we study in
the ”computer science” domain, all L1 domains’ relationship
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Fig. 4. Domain relationship in ”Computer Science”

with ”data-mining” domain.
In this figure, we can view the evolving relationship – the

fluctuating correlation in different years among Data Mining
and other different computer science related domains, such as
AI, Algorithm, NLP and etc. which are listed in the figure’s
legend. By this figure, the affiliation of ”Data Mining” domain
is revealed, i.e. we can see the switching closeness of data
mining to other domains. For instance, in the early stage, ”Data
Mining” is highly related with ”Bio-information” – ”Data
Mining” has almost 90% co-papers with ”Bio-information”
which refers high correlation while in current years, the co-
papers’ ratio of ”Bio-information” has been decreased to a
very low level, which indicates the degeneration of relationship
between ”Data Mining” and ”Bio-information”. Moreover, it
can be viewed that recently the ”Data Mining” domain has
always preferred to combine knowledge in publication from
”Artificial Intelligence” and ”Machine Learning” domain as
their co-paper ratio is rapidly growing.

C. Paper-oriented Exploration

We also explore several features of paper’s cross-domain
performance, including papers’ domain distribution, and pa-
per’s cross-domain citation distribution. First of all, we find
that the paper’s number is power-law distributed depending on
paper’s domain number.

In figure 5, the left graph presents relation bwteen Art’s
paper domains count and paper number. Though the domain
count is not large, it seems to be still power-law distribution.
Right graph is computer science’s. This graph more smoothly
simulates the power-law distribution since there are much
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Fig. 5. Paper-oriented power-law distribution

Fig. 6. Power-law in ”AI”

more papers in computer science and much more cross-domain
collaboration.

Figure 6 is the power-law of AI (L1 layer). We find that
the paper has fewer domains as we only take AI’s fields into
count – the AI contains several smaller L2 and L3 domains.

Paper citation distributions
We believe cross-domain paper citation performance is an

essential indicator for paper’s quality, i.e. whether the paper is
good or not, since a good paper might cross several different
domains as nowadays research emphasizes on the study’s
width. More specifically, a scientific study combining several
fields of studies knowledge together, might be more likely
to catch others’ attention and generate stimulating results.
For instance, paper in computer science domain with solid
mathematical foundation or theory, i.e. also in mathematical
domains are always more likely to be a good paper. Moreover,
recently, scientific study launched in biology domain make
many refreshing breakthroughs by combining computer sci-
ence, especially data mining and machine learning’s knowl-
edge.

We extract papers’ citation information and use their cita-
tions domain information to draw paper citation distribution
map, which intuitively study the structure of paper citation
distribution with domain information.

In figure 7, the green node in the center of the graph
indicates the paper we want to study, and the pink node
represents paper which cite the paper we study. The light green
node refers to L1 layer domain, red node is L2 layer domain
while blue is the L3 layer domain. And the line between green

Cited paper

Domains

Citations belonging 
to the correspond 

domains 

Fig. 7. Paper’s citation domain structure

node to pink node means the paper’s citation, while other
lines among papers to domains describes membership relation
between papers and domains. More specific information need
to be updated.

What we can see is that the paper’s citation can be divided
into several cliques according to the paper’s domain info. And
there exists clique overlapping as citation papers might have
more than single domains which are similar with the paper
being cited. And we consider these papers to be successors of
the original paper, which we will discuss later as these papers
are more likely to be papers which inherit studying paper’s
idea or methods. successor phenomenon

Paper’s average citation distribution over domain num-
ber.

We believe that paper’s citation is related to its domain
count, as the paucity of domains might constrain a paper’s
impact in a small domain, while too many domains might
decrease paper’s quality as too many domains might distract
or diffuse author’s attention and harms the paper’s depth.
Therefore, we plot the paper’s average citation number over
paper’s domain count in below figures.

Figure 8 is the overall paper’s citation count over their
domain count. And we can clearly find a peak when paper’s
domain count goes to about 50. And we check these paper’s
number in case paper’s number is too small to represent a
pattern when paper’s domain count exceeds a certain number,
e.g. 50. And we find when paper’s domain count is less
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Fig. 8. Papers’ average citation count with certain domain numbers of overall
paper in the database

than 100, the paper’s number is large enough to calculate the
average citation count. In other words, this ”peak” pattern does
exist.

Moreover, when we look into smaller domains, computer
science’s sub-domains, for instance, we find that this rule is
almost generally valid. And in fact though in some subdomain-
s, theoretical cs for instance, though paper’s domain count is
small, the peak still exist.

In figure 9, we can easily view these properties.
Paper’s citation performance over more specific domains

Further, we look into the paper’s citation distribution. And
we divide one paper’s citation into several different types
according to the cross-domain step. Intuitively speaking, the
cross-domain step is a parameter we use to evaluate the
paper’s cross-domain distance. For instance, a paper in ”
Astrology” domain cites paper in ”Data-mining” has longer
cross-domain distance than paper in ”Data Base” cite paper in
”Data-mining”. But how to quantify this difference? We take
advantage of our dataset’s level partition. And we set cross-
domain step into four class, i.e. merge at L3 layer, L2 layer, L1
layer and L0 layer. Noticed that a paper may belong to sevral
domains, the domains of two papers can merge at different
layers. We choose the lowest merge layer as the cross-domain
distance since the domains at lower layer can represent the
paper more specifically. figure 10 presents our dividing rules:

In figure 10, the domains at layer 3 such as ”Graphical
Tools” and ”Data Analyze” merge at layer 2, while ”Graphical
Tools” and ”Network Simulation” merge at layer 1. If the
cited paper and its citation belongs to ”Graphical Tools” and
”Network Simulation” respectly, their domains merge at layer
1 and layer 0, and we chose the lowest merge layer, i.e. layer
1, as the merge layer of this citation. And according to our
rules, it is easily can be found that a citation type is supposed
to only belong to one class. And the possibility of a citation
belongs to these 4 class should be summed into exactly 1.
Drawbacks: we currently cannot figure the distance between
math to cs and art to cs which is longer.

As we can see in figure 11, we pick up some papers with
high citations to draw this distribution and the citation in cross-
L3 type’s possibility is much higher than cross L1 and cross

L2 type’s. And in fact cross L2 type’s possibility is slightly
higher than cross L1 types. And the cross L0’s possibility is
very low, almost 0.

In figure 12 we calculate the average cross domains ratio in
several domains. The result shows that the citations of a paper
are tends to be in a relatively close distance of the cited paper.
In some domains such as ”Literature”, the ratios of cross L1
level and L2 level are much lower than other domains, which
indicates that in those domains, the interdisciplinary trend is
not so strong.

successors In figure 6, we find some citation papers which
might have more than one domains that overlap with the fields
of cited paper. This phenonmenon exposes that the cited paper
introduces more papers to cross the domains as the cited paper
does. It illustrates the real ability of the cited paper — the
ability to lead more papers to be interdisciplinary. So we call
this phenonmenon as successor phenonmenon.

In figure 13, we count the number of citation papers
averagely for one cited paper and the number of the corre-
sponding overlaping domains with the cited paper. We find
that successors which have more overlaping domains with the
cited paper are relatively less. It means that even the cited
paper crosses many domains, only a few citation papers cross
the same domains as the cited paper does. Waiting for clearer
explaination and more graphs

IV. MODELING AND ANALYSIS ON OBSERVATION

In this section, based on the previous observations in real
world dataset, we use three models to help to simulate or
evaluate the scholarly data’s cross-domain performance.

A. Power-law Distribution Modeling

In our observation, it can be viewd clearly that there exists
two kinds of power-law distributions in our study. The first
is the power-law distributed domain’s number with paper’s
number in this domain. And the second is the power-law distri-
bution between the paper’s number and the this paper’s relative
domains’ number. And here we construct a evovlving model
which can properly reproduce these power-law distribution in
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the cross-domain scholarly data. And we call this model as
model of cross-domain power-law – MCP.

MCP Construction:
We use network structure to present the scholarly data.

And in MCP, the graph is denoted as G(P,D). Then, we
use bipartite graph to present the inter-correlation between
elements. Besides, we also focus on the intra-features of

every element. For an intuitive understanding, we illustrate the
framework of our evolving scholarly model in Figure IV-A. It
contains:

(1) Two node sets: Paper node set Np, and domain node
set Nd. The node in each node set is marked as np and nd.

(2) Inter-edge sets: We denote the edges between every two
node sets as inter-edge sets. And, we refer all edges between



paper node and domain node as Epd(Edp), then an edge enpnd
which belongs to Epd means paper np belongs to the domain
nd or equivalently domain nd has paper np.

(3) Two intra-edge sets: Intra-edge is the edge in the same
node set, and our graph has two intra-edge sets, which we
refer as Epp and Edd. If an edge enipnjp ∈ Epp, then we know
that paper nip and njp have reference or citation relationship.
While if an edge enidnjd ∈ Edd, then we know that domain nid
and njd are directly connected in the domain hierarchy dataset.

In Figure IV-A, nodes are illustrated as colorful circles in
each node set while intra edge and inter edge are labeled. And
a new paper node is trying to preferentially attach himself
with some heavily linked papers nodes (distinguished by their
sizes) that are already in the paper set. With these nodes
and edges of the model, we can well extract the structure of
papers’ cross-domain relationship in scholarly networks. We
present notations in Table I for later convenience and describe
the evolving process of the proposed model in the following
subsection.

TABLE I
NOTATIONS AND DEFINATIONS

Notations Definations

Np, Nd Node set of Paper and Domain
Epd Inter-edge set between nodes in Np and Nd

Epp, Edd Intra-edge set of Np and Nd

αp, αd Probability that a new node arrives in Np and Nd

βp, βd Probability that an edge added in set Epp and Edd

cpd,cdp Number of edges added to set Epd at one time slot
G(P,D) Graph of our cross-domain scholarly model
B(Np, Nd) Bipartite graph with sets Np, Nd, and Epd

Evolving process:
While we defer the detailed evolving process of the pro-

posed model to Algorithm 1, we would also like to provide
a corresponding brief summary of the process. We first fix
parameters including αi, βij and cij where i 6= j ∈ {p, d},
and then assume that the evolution starts from an initial case
that can be modeled as an initial graph, showing that each
node in the graph is linked to a number of nodes in other
node sets. After initialization, for every time slot, we classified
the process into five main steps: 1) A new node, which can
be randomly designated as a paper or a domain, is added to
the graph. For clarity, here we only take the arrival of a new
paper as example for explanation of the subsequent steps. And
the symmetry also holds for the domain. 2) With probability
proportional to degree in B(Np, Nd), paper node ndp is chosen
as prototype for the new node np. 3) cpd neighbors (n1d ,...,
n
cpd
d ) of ndp in Nd are randomly chosen to have connections

with node np. 4) cpd edges are added between n1d ,..., ncpdd .
5) Edges between every two paper nodes are added with
probability βpd if they have a common domain.

For a better intuitive understanding of this evolving process,
let us, for instance, consider the arrival of a new paper. This
paper is likely to learn from an influential paper, which is
thus selected as a prototype and influences the new paper on

choosing research domains. To illustrate, this new paper will
have high possibility to generate studies in the same domains
like the old, influential paper. Besides, the papers belongs
to the same domain are often relevant, indicating that these
papers belong to these domains with a higher possibility to be
connected, i.e. cite each other than those belong to different
domains.

Similarly, when a new topic emerges in the literature, it is
usually inspired by some existing topics (prototypes) and these
topics are more likely to be related by the same papers they
have.

Algorithm 1 Evolving Process
Parameters: Simulated time steps: T , Fixed probability αi

that a new node arrives in Ni, fixed βij ∈ (0, 1) and
integers cij > 0 where i 6= j ∈ {p, d}.

Initialisation: In initial graph, the node in paper set has
a certain number of neighbors with domain set. For
example, a paper node np connects to at least cpd domain
nodes. So the inter-edge set Epd has at least cpd edges in
the beginning.

1: for 1 ≤ t ≤ T do
2: 1) Node arrival: According to αp, αd, we decide the

type of node to join the graph. In later discussion, we
take the arrival of a new paper node np as example, and
the symmetry also holds for domain.

3: 2) Preferentially chosen ProtoType: A node ndp ∈ Np is
chosen as prototype for the new node, with probability
proportional to its degree in B(Np, Nd).

4: 3) Edge copying: cpd edges are copied from ndp, that is,
cpd neighbors of ndp, denoted by n1d ,..., ncpdd in Nd are
chosen uniformly at random, and the edges (np, n1d), ...,
(np, n

cpd
d ) are added to the graph.

5: 4) Evolution inside: For every two nodes nxp and nyp
(x 6= y), if they have a common domain, then with
probability βpd, an edge (nxp , nyp) is added in Epp.

6: end for

B. Peak

C. Evaluation of Paper’s Influence’s Broadness

V. THEORETICAL ANALYSIS

In this section, we mathematically analyze our MCP model
and the peak model to confirm that our models can well repro-
duce properties in the real-world database, i.e. the scholarly
network in this paper.

A. MCP Analysis

Here we prove that our MCP can well reproduce two kinds
of the power-law distributions in our observation.

According to our model, we divide the nodes’ degree into
two types – the first is the inter-degree, i.e., the node degree
between node sets, related with the growth of Epd, we call it
dir – ir here means inter. And the second is the intra-degree,
i.e. the node degree inside node set, related with the growth
of Eii, i.e., Epp or Edd, we call it dia – ia here means intra.



Growth of inter-degree: Assuming node n arrives at node
set Ni at time t0 with initial inter-degree diri (t0), the inter-
degree of n at time t > t0 is

diri (t) =

(
t

t0

)λi
diri (t0) ,

where λi ∈ (0, 1) is a constant, and i ∈ {p, d}.
In fact, an implications can be deduced by this result, that

the inter-degree diri (t) grows with polynomial rate in time t,
following the power λi ∈ (0, 1).

This implication gives the growth rate of node’s inter-
degree. And the detailed proof is given in Theorem 1.

Growth of intra-degree: Again, we set beginning time as
t0 and the intra-degree of node set Ni at time t > t0 is diai (t),
then

diai (t) = Θ
(
t

1
λj

+1
)
,

where λj represents the constant λ in Nj . For instance when
i is p, i.e., the paper, the j represents the d, i.e., the domain.

The equation reveals that, in our model, the intra-degree of
a node set actually is related with the inter-degree’s growing
rate variable λ. As in equation the intra-degree is positively
related with the growing with time slot t, we can say the intra-
degree also grows with time. The detailed proof is given in
Theorem 2.

Also, we analyze nodes’ power-law distribution in two cases
– inter and intra-degree respectively.

Distribution of inter-degree: For the node n ∈ Ni in
G(P,D) with t → ∞, the inter-degree distribution of it
follows

P
{
diri (t) = x

}
∝ x−

1
λi
−1
.

And we find that the inter-degree dir follows the power-law
distribution with exponent − 1

λi
− 1.

Results show our model well capture the power-law distri-
bution of nodes’ inter-degree, which are proved in Theorem 3
and verified by experimental measurements.

Distribution of intra-degree: For the node n in G(P,D)
with t→∞, the intra-degree distribution of n ∈ Ni follows

P{di(t) = x} ∝ x−ωi ,

where ωi is a constant which describes the exponential factor
in power-law distribution.

This means our model well simulates the power-law dis-
tribution of nodes’ intra-degree. And results are proved in
Theorem 4.

Combining above four results together, it can be easily
viewed in our model – MCP that the degree of the node in
graph G(P,D) grows with polynomial rate in time t, and
the growth rate differs from inter-degree to intra-degree of
the node. Moreover, the inter-degree as well the intra-degree
are proven to be powerlaw-distributed in MCP. Therefore, our
MCP model can well simulate and reproduce our observation
in real-world database.

Theorem 1: For graph G(P,D) generated after t time slots
(t ≥ t0), with the initial condition that a certain node n ∈ Np

is added to node set Np at time t0 with the degree dir(t0)
from Np to Nd, the inter-degree of n at time t satisfies

dirp (t) =

(
t

t0

)λp
dirp (t0) .

This result also holds for n ∈ Nd with symmetrical
expressions.

Proof: At each time slot t, the inter-degree of node n ∈
Np in B(Np, Nd), i.e. dirp (t), can only increase in follow case:
a new node arrives at Nd and is connected to n, which results
in dirp (t) = dirp (t− 1) + 1.

In edge copying, we choose the prototype node according to
its inter-degree, while the endpoint of any edge is chosen with
equal probability. Thus, the probability that a new added edge
in B(Np, Nd) points to a certain node n is

dirp (t−1)
sp(t−1) , where

sp(t− 1) denotes the sum number of edges in B(Np, Nd) at
time t− 1, and we have

sp(t− 1) = (αpcpd + αdcdp)(t− 1).

Then, we get

dirp (t)− dirp (t− 1) = αdcdp
dirp (t− 1)

sp(t− 1)

With the initial condition that

dirp (t) =

(
t

t0

)λp
dirp (t0) , (1)

where λp =
αdcdp

αpcpd+αdcdp
.

By same approach we can obtain the expression result of
dird (t) for nodes in Nd. That is

dird (t) =

(
t

t0

)λd
dird (t0) ,

where λd =
αpcpd

αpcpd+αdcdp
. Thus we complete the proof.

Theorem 2: For graph G(P,D) generated after t time slots
(t ≥ t0), with the condition that inter-degree in node set Nd
growing with the power λd, the intra-degree of n ∈ Np at
time t satisfies

diap (t) = Θ
(
t

1
λd

+1
)
.

This result also holds for n ∈ Nd with symmetrical
expressions.

Proof: The intra-degree in Np is generated by common
neighbors in Nd.

When a certain node d ∈ Nd has node degree x from Nd
to Np, it has exactly x neighbors in Np. Thus, the expected
intra-degree in Np added by this node is 2βp

(
x
2

)
, where βp

is the linking probability when two nodes inside node set
Np have a common neighbor node in Nd. And the number
of nodes in Nd who have x neighbors in Np is expected as
|Nd|P

{
dirap(t) = x

}
where P denotes the probability that node

in Na having x neighbors in Np exists and |Na| denotes the
total nodes in Na. Therefore, the intra-degree generated by
nodes with x neighbors in Na is

Contribution(x) = 2βp

(
x

2

)
|Nd|P

{
dird (t) = x

}
. (2)



Considering we add certain number of nodes with a certain
probability in the node set, we get |Na| = Θ(t). Thus,
combining the result of Theorem 3, we get the intra-degree
diap (t) in node set Np contributed is

diap (t) =

max∑
x=1

Contribution(x)

=

max∑
x=1

2βp

(
x

2

)
|Nd|P

{
dird (t) = x

}
= Θ

(
max∑
x=1

x2x
− 1
λd
−1
t

)

= Θ

(
t∑

x=1

x
− 1
λd

+1
t

)
,

where max presents the maximum inter-degree in Epd which
satisfies max = Θ(t). By using the sum of p-series, we get

t∑
x=1

x
− 1
λd

+1
= t

1−(1− 1
λd

)
.

Therefore, we have diap (t) = Θ
(
t

1
λd

+1
)

.
By same approaches, we can also obtain the expression

result of diad for nodes in Nd, thus we complete the proof.

Theorem 3: For graph G(P,D) generated after t time slots,
when t → ∞, the inter-degree sequences of n ∈ Np in
B(Np, Nd) follows power-law distribution that

P
{
dirp (t) = x

}
∝ x−

1
λp
−1
,

where x is one node’s total degree and P presents the probabili-
ty. This result also holds for node n ∈ Nd sharing symmetrical
expressions.

Proof: First of all, we consider the distribution of dirp (t)
which denotes the degree of node n ∈ Np in B(Np, Na).
According to Equation (1), the cumulative distribution function
of dirpa(t) can be calculated as

P
{
dirp (t) < x

}
= P

{
dirp (t0)

(
t

t0

)λp
< x

}

= P

t0 >
(
dirp (t0)

x

) 1
λp

t


= 1− dirp (t0)

1
λp x
− 1
λp .

Then, the probability density function of dirp (t) can be cal-

culated using P
{
dirp (t) = x

}
=

∂P{dirp (t)<x}
∂x . Also, it can be

expressed as

P{dirp (t) = x} =
x
− 1
λp
−1∑n

x=1 x
− 1
λp
−1
,

where
∑n
x=1 x

− 1
λp
−1 is a constant normalization coefficient.

Therefore, we get

P
{
dirp (t) = x

}
∝ x−

1
λp
−1
,

By same approaches, we can also calculate the distribution
of dird (t), and thus the proof is complete.

Theorem 4: For graph G(P,D) generated after t time slots,
when t → ∞, the nodes’ intra-degree sequences of n ∈ Np
follow power-law distribution that

P{diap (t) = x} ∝ x−ωp ,

where x is one node’s total degree, P presents the probability
and ωp is a constant. This result also holds for node n ∈ Nd
as they share symmetrical expressions.

Proof: The proof uses the result of Silvio Lattanzi and D.
Sivakumar’s research work.
citelattanzi2009affiliation. In their work, the model’s bipartite
network’s structure is similar to our model’s bipartite net-
works’ which are disconstructed from G(P,D).

And by Theorem 4 and Theorem 8 in their paper, they fully
prove the total degree distribution is similar to the inter-degree
distribution when time slot t → ∞. Which means the total
degree is also power-law distributed.

Therefore, the total degree distribution in our model follows

P{dp(t) = x} ∝ x−ωp ,

where ωp is a constant.
Using same methods, we can obtain the distribution for node

n ∈ Nd and thus complete the proof.

VI. CONCLUSION

The conclusion goes here.
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Fig. 13. overlap domain count and the number of cited papers in one domain
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