ACADEMIC RECOMMENDER SYSTEM DESIGN

顾健喆

WHAT'S ACADEMIC RECOMMENDER SYSTEM

Similar paper to paper

Relevant paper to author

Reading suggestion to user

Recommendation is based on feature of paper.

Title, Abstract, Keyword, Reference, User's activities...

INTRODUCTION OF RECOMMENDER SYSTEM

Two Roles:

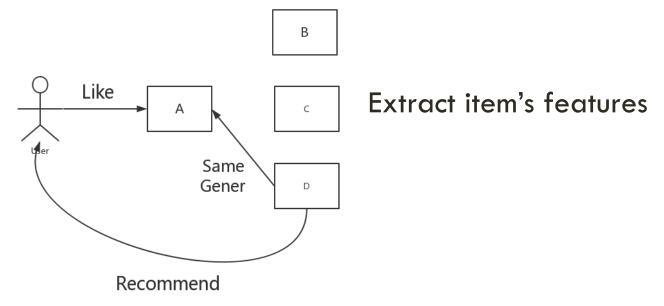
- User : Providing opinion to items
 - e.g. Rating, Thumb up, Thumbing, Star...
- Item : Providing necessary information.

Three Types:

- Content-Based Algorithm (CB)
- Collaborative Filtering Algorithm (CF)
- Hybrid Approach

CONTENT-BASED SYSTEM

Providing recommendations by comparing the representations of content contained in an item to representations of content that interests the user.



COLLABORATIVE FILTERING

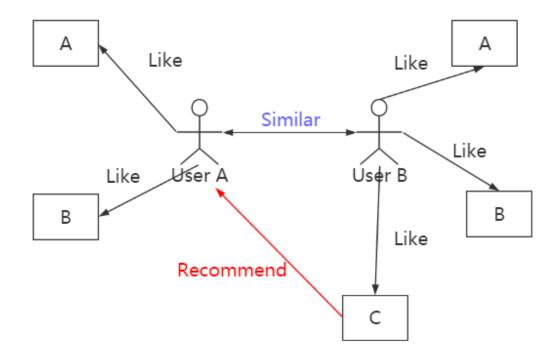
Finding a subset of users who have similar tastes and preferences to the target user and use this subset for offering recommendations.

Preferences are recorded in the rating matrix.

Two Main Approach:

- User-based
- Item-based

IDEA OF COLLABORATIVE FILTERING



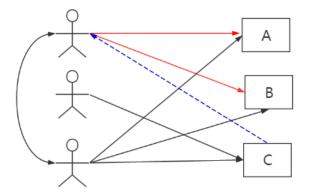
USER-BASED COLLABORATIVE FILTERING

Use user-item rating matrix

Make user-to-user correlations

Find highly correlated users

Recommend items preferred by those users



Pearson Correlation :

$$userSim(u,n) = \frac{\sum_{i \subset CRu,n} (r_{ui} - \bar{r}_u)(r_{ni} - \bar{r}_n)}{\sqrt{\sum_{i \subset CRu,n} (r_{ui} - \bar{r}_u)^2} \sqrt{\sum_{i \subset CRu,n} (r_{ni} - \bar{r}_n)^2}}$$

Prediction Function : $pred(u,i) = \overline{r_u} + \frac{\sum_{n \subset neighbors(u)} userSim(u,n) \cdot (r_{ni} - \overline{r_n})}{\sum_{n \subset neighbors(u)} userSim(u,n)}$

USER-BASED COLLABORATIVE FILTERING

	ltem User	11	12	13	14	15	
	U1	5	8		7	8	
	U2	10		1			
\rangle	U3	2	2	10	9	9	
	U4		2	9	9	10	
	U5	1	5			1	
	User a	2		9	10	•	•

Recommend items preferred by highly correlated user U3 Recommend I5 to User a.

ITEM BASED COLLABORATIVE FILTERING

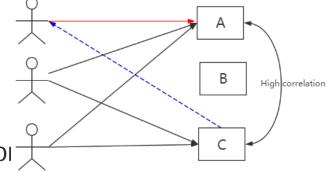
- Use user-item ratings matrix
- Make item-to-item correlations
- Find items that are highly correlated
- Recommend items with highest correlation

Similarity Metric :

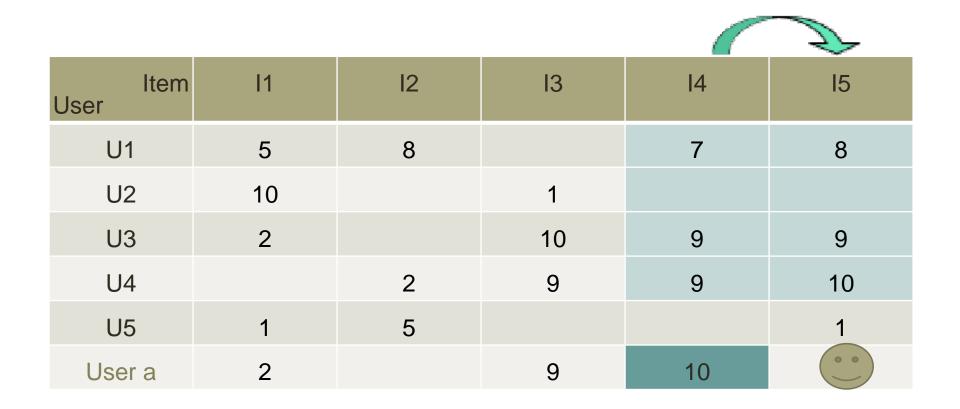
$$itemSim(i, j) = \frac{\sum_{u \subset RB_{i,j}} (r_{ui} - \overline{r_u})(r_{uj} - \overline{r_u})}{\sqrt{\sum_{u \subset RB_{i,j}} (r_{ui} - \overline{r_u})^2} \sqrt{\sum_{u \subset RB_{i,j}} (r_{uj} - \overline{r_u})^2}}$$

Prediction Function :

$$pred(u,i) = \frac{\sum_{j \in ratedItems(u)} itemSim(i,j) \cdot r_{ui}}{\sum_{j \in ratedItems(u)} itemSim(i,j)}$$



ITEM BASED COLLABORATIVE FILTERING



15 is highly correlated to preferred items 14

HYBRID RECOMMEND APPROACH

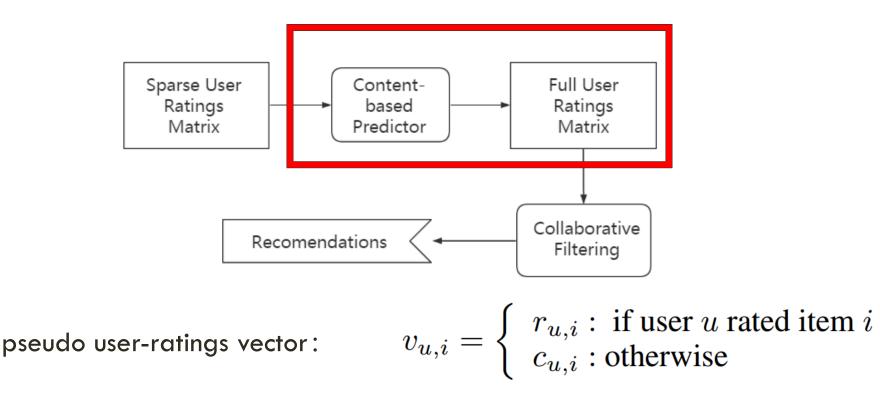
The problem of the Collaborative Filtering:

- Sparsity: Most users do not rate most items and hence the user-item rating matrix is typically very sparse.
- Cold Start: An item cannot be recommended unless a user has rated it before.

Hybrid Recommend Approach can overcome these shortages.

CONTENT-BOOSTED COLLABORATIVE FILTERING

Adding Content-based Predictor before Collaborative Filtering



ACADEMIC RECSYS DATA

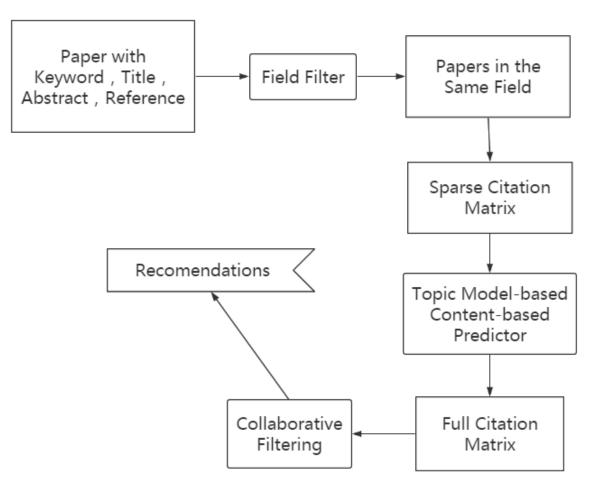
Content-based Recommender system

- Title
- Abstract
- Keyword

Collaborative Filtering Recommender System

Reference

HYBRID ACADEMIC RECSYS DESIGN



ACADEMIC COLLABORATIVE FILTERING RECSYS

Integrating CF into the domain of research papers

- CF works with ratings matrix
- Columns represent 'users'.
- Rows represent 'item'
- Maping citation web onto ratings matrix.

	Item 1	Item 2
User 1	R1,1	R1,2
User 2	R2,1	R2,2

MAPPING CITATION WEB ONTO CF RATINGS MATRIX(1)

'Item': Citations

'User': Real Users

'Rating': Users' activities: Thumb Up, Thumb down, Rating etc.

Problem:

- Startup problem
 - Not enough users and users activities in the dataset

MAPPING CITATION WEB ONTO CF RATINGS MATRIX(2)

'Item': Citations

'User': Paper authors

'Rating':"Vote" for the papers if he has cited

Advantage: No startup problems

Disadvantage:

- Many authors have written papers in several different fields over their careers.
 - Serendipity is not useful in academic recsys.

MAPPING CITATION WEB ONTO CF RATINGS MATRIX(3)

'Item': Citations

'User': Paper

'Rating': Each paper would then vote for the citations found in its references list.

	Ciation1	Citation2	Citation3	Citation4	Citation5
Paper 1	\bigtriangledown		\bigcirc	\bigcirc	
Paper2		\checkmark			\checkmark
Paper3	\checkmark		\bigtriangledown	\bigtriangledown	\bigtriangledown

COLLABORATIVE FILTERING ALGORITHMS

Co-Citation Matching

Co-citation Matching works by counting co-citations

User-Item CF

 User-Item algorithm compares papers (rows) in the matrix to create a neighborhood of the most similar papers to the target paper.

Item-Item CF

 The Item-Item algorithm compares citations (columns) in the ratings matrix to create a neighborhood

ACADEMIC CONTENT-BOOSTED RECSYS

Data Sparsity

	Ciation 1	Citation2	Citation3	•••••	Citation n	Citation n+1
Paper1	1	Empty	1	Empty	1	1
Paper2	Empty	1	Empty	Empty	Empty	Empty
Paper3	1	Empty	1	Empty	1	Empty

Serendipity is not useful

The Long Tail

FIELD FILTER

Serendipity is not useful

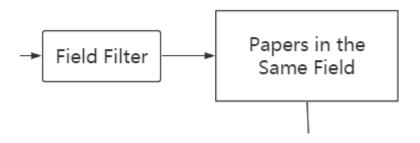
Recommending paper in its filed.

Using keyword and keyword hierarchy to extract paper's field.

Using PaperRank to find

the important paper in

fields.



TOPIC MODEL-BASED CONTENT-BASED PREDICTOR

Using Topic Model to analyze the similarity of papers.

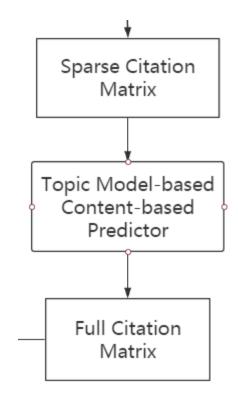
Content: Title and Abstract

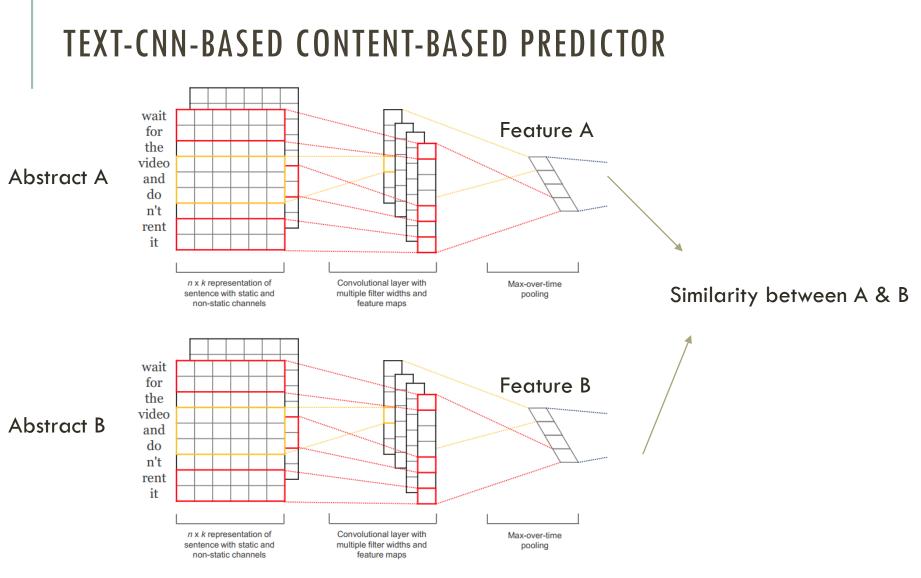
'Title' has more weight than 'abstract'

Giving the top similar paper rating

in the "Citation Matrix"

	Ciation1	Citation2	Citation3	Citation4	Citation5
Paper 1	5	3	5	5	
Paper2		5		3	5
Paper3	5		5	5	5





Using TextCNN to analyze the similarity of papers.

End.