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Abstract 

Most recommender systems use Collaborative Filtering or Content-based methods to predict 

new items of interest for a user. However, both methods have their own disadvantages in many 

situations. Thus, incorporating the two methods can overcome these shortcomings. Besides, 

Content-based methods usually adopt LSI to extract the features of papers. But CNN is 

increasingly popular in feature extracting and is proved to be effective. So, we adopted CNN 

instead of LSI to handle the task. In addition, generally recommender tasks have enough users 

to rate, while Acemap has scarce users. Therefore, we mapped the citation web to Collaborative 

Filtering Ratings Matrix. In short, our approach used both LSI and CNN as content-based 

predictor to enhance existing user data, and then provides personalized suggestions through 

collaborative filtering which has been mapped from citation web to ratings matrix. We present 

experimental results that show how this approach performs well on publications from Acemap.  

Related Work 

Recommender systems help overcome information overload by providing personalized 

suggestions based on a history of a user’s likes and dislikes. Many on-line stores 

provide recommending services e.g. Amazon, CDNOW, BarnesAndNoble, IMDb, etc. 

There are two prevalent approaches to building recommender systems — Collaborative 

Filtering (CF) and Content-based (CB) recommending. CF systems work by collecting 

user feedback in the form of ratings for items in a given domain and exploit similarities 

and differences among profiles of several users in determining how to recommend an 

item. On the other hand, content-based methods provide recommendations by 

comparing representations of content contained in an item to representations of content 

that interests the user.  



Content-based methods can uniquely characterize each user, but CF still has some key 

advantages over them (Her- locker et al. 1999). Firstly, CF can perform in domains where 

there is not much content associated with items, or where the content is difficult for a 

computer to analyze — ideas, opinions etc. Secondly a CF system has the ability to 

provide serendipitous recommendations, i.e. it can recommend items that are relevant 

to the user, but do not contain content from the user’s profile. Because of these reasons, 

CF systems have been used fairly successfully to build recommender systems in various 

domains (Goldberg et al. 1992;  

Dataset Description 

We demonstrate the working of our hybrid approach on the dataset from Acemap. We take the 

use of data in two forms, one is the citations and the other kind of data is abstracts of 

publications. We get the paper-paper citations from mag-new dataset from Acemap server, 

crawled by the students from crawling group. Most of the citations are imported from Microsoft 

Scholar dataset, which was a free-to-download dataset, and the rest are crawled from IEEE 

dataset, ACM dataset, google scholar and so on. Since the dataset is too large which contains 

billions of papers, we decide to use only the papers from computer science field to do the 

experiments, which we are more familiar with, and the number of papers in computer science is 

also enough for evaluation. The citation dataset contains 35 subfields, and remains 33 subfields 

after being filtered 2 subfields that has low confidence in belonging to computer science field, 

which are 0.4 and 0.6 respectively. 

 

The content information, the abstracts, of publications are also got from Acemap dataset. The 

source of these abstracts are similar to the source of the citations, but it is harder to crawl the 

abstract from datasets such as IEEE dataset and ACM dataset than crawling citation information. 

So, there are only about 20% publications has an abstract in our experiments, some of which are 

even incorrect, such as including messy codes or misplacement In view of the huge number of 

the publications, however, even 20% of all dataset is enough for our experiments, but it’s far 

less enough to build a favorable website.  

System Description 



 
Figure 1. System Chart of the Hybrid-Based Academic Recommender System 

The general overview of our system is shown in Figure 1. The web crawler uses the URLs 

provided in the academic datasets to download abstracts from datasets, such as google scholar, 

IEEE or ACM. After appropriate preprocessing, the downloaded content is stored in Acemap 

server. The Acemap dataset also provides the paper-paper citation matrix, which is a matrix of 

a paper in computer science citing another paper in or maybe not in computer science.  

 

Since Acemap has few users currently, it is impossible for us to adopt real user-based 

recommending method. Thus, we will refer to each row of this matrix as a user-ratings vector. 

The paper citing other papers is called user, and the paper being cited is called the item. If two 

papers have the citing relationship, the rating between them is 5, else if they are similar in 

context, they will get a score from 0 to 5. The user-ratings matrix is very sparse, since most items 

have not been rated by most users. The content-based predictor is trained on each user-ratings 

vector and a pseudo user-ratings vector is created. A pseudo user-ratings vector contains the 

user’s actual ratings and content-based predictions for the unrated items. All pseudo user-

ratings vectors put together form the pseudo ratings matrix, which is a full matrix. Now given 

an active user’s ratings, predictions are made for a new item using Collaborative Filtering on 

the full pseudo ratings matrix. 

 

The Content-Based Recommender has many forms. Here we adopt a kind of topic model(Latent 

Semantic Indexing) and CNN(Convolutional Neural Network) to handle the task. 



The following sections describe our implementation of the content-based predictor and the 

pure CF component; followed by the details of our hybrid approach. 

Collaborative Filtering Part 

We implemented a pure collaborative filtering component that uses a neighborhood-based 

algorithm. In neighborhood-based algorithms, a subset of users are chosen based on their 

similarity to the active user, and a weighted combination of their ratings is used to produce 

predictions for the active user. The algorithm we use can be summarized in the following steps: 

1. Weight all users with respect to similarity with the active user. 

  Similarity between users is measured as the Pearson correlation between their ratings vectors. 

2. Select n users that have the highest similarity with the active user. 

  These users form the neighborhood. 

3. Compute a prediction from a weighted combination of the selected neighbors’ ratings. 

In step 1, similarity between two users is computed using the Pearson correlation 

coefficient, defined below:  

 

where ra,i is the rating given to item i by user a; is the mean rating given by user a; and 

m is the total number of items.  

In step 3, predictions are computed as the weighted average of deviations from the 

neighbor’s mean:  

 

where pa,i is the prediction for the active user a for item i; Pa,u is the similarity between 

users a and u; and n is the number of users in the neighborhood. For our experiments 

we used a neighborhood size of 30, based on the recommendation of (Herlocker et al. 

1999).  



It is common for the active user to have highly correlated neighbors that are based on 

very few co-rated (overlapping) items. These neighbors based on a small number of 

overlapping items tend to be bad predictors. To devalue the correlations based on few 

co-rated items, we multiply the correlation by a Significance Weighting factor 

(Herlocker et al. 1999). If two users have less than 50 co-rated items we multiply their 

correlation by a factor sga,u = g/50, where n is the number of co-rated items. If the 

number of overlapping items is greater than 50, then we leave the correlation 

unchanged. 

Content-Based Predictor Part 

Latent Semantic Indexing 

Latent Semantic Indexing (LSI) is a method for discovering hidden concepts in document data. 

Each document and term (word) is then expressed as a vector with elements corresponding to 

these concepts. Each element in a vector gives the degree of participation of the document or 

term in the corresponding concept. The goal is not to describe the concepts verbally, but to 

be able to represent the documents and terms in a unified way for exposing document-

document, document-term, and term-term similarities or semantic relationship which are 

otherwise hidden. 

 

Convolutional Neural Network for Text 

 
Figure 2. Traditional Convolutional Neural Network for Text Classification 



The model architecture, shown in figure 2, is the CNN architecture of Collobert et al. (2011). 

Let xi ∈ Rk be the k-dimensional word vector corresponding to the i-th word in the sentence. 

A sentence of length n (padded where necessary) is represented as: 

x1:n=x1⊕x2⊕...⊕xn,         (1) 

where ⊕ is the concatenation operator. In general, let xi:i+j refer to the concatenation of 

words xi , xi+1 , . . . , xi+j . A convolution operation involves a filter w ∈ Rhk, which is applied 

to a window of h words to produce a new feature. For example, a feature ci is generated from 

a window of words xi:i+h−1 by  

ci = f(w · xi:i+h−1 + b)          (2)  

Here b ∈ R is a bias term and f is a non-linear function such as the hyperbolic tangent. This 

filter is applied to each possible window of words in the sentence {x1:h, x2:h+1, . . . , xn−h+1:n} 

to produce a feature map  

c = [c1,c2,...,cn−h+1],          (3) 

with c ∈ Rn−h+1. They then apply a max-overtime pooling operation (Collobert et al., 2011) 

over the feature map and take the maximum value cˆ = max{c} as the feature corresponding 

to this particular filter. The idea is to capture the most important feature—one with the highest 

value—for each feature map. This pooling scheme naturally deals with variable sentence 

lengths.  

They have described the process by which one feature is extracted from one filter. The model 

uses multiple filters (with varying window sizes) to obtain multiple features. These features 

form the penultimate layer and are passed to a fully connected softmax layer whose output is 

the probability distribution over labels.  

Since the task is to predict whether the altitude a comment of a movie is positive or negative. 

Thus, there are two labels in their work, “positive” and “negative”. 



  

Figure 3. Convolutional Neural Network for Text Feature Extracting 

Our task is slightly different from Colloberts, we should determine the similarity between 

papers and recommend most similar papers instead of classify papers, but it is still a 

meaningful CNN model which can be referenced.  

We assume that if a neural network has been trained well and has the ability to predict which 

field a paper belongs to, the network has the ability to recognize most features of a single 

paper. The feature contains the information of the topic, the research method and attitudes of 

a paper, so if the features between two papers are similar, or the distance between the two 

feature vectors are short, it also means that the two papers are similar. Intuitive, the similar 

paper is what users want. Thus, we use the same method to train, except that we replace the 

labels descripting attitude with the labels descripting academic fields and do the training. 

After training the network, we change the structure of the testing network. We abandoned the 

last layer, label layer, and use the output of the previous layers as the feature vector of a 

paper, since we think this vector contains most topic and knowledge information of a paper, 

which can be used to calculate the similarity. 

Result 

We apply the Hybrid-Based recommender algorithm onto the constructing of Acemap. We 

calculate the similarities between all papers in computer science field, which include 33 subfields, 

each includes 3 million papers on average, and then select the top-5 similar papers of each 

recommended paper and save the results on the database. Finally, we displace the original 

←Feature Vector 



recommending result in the “Similar” section on “Paper Page” with the new results 

calculated by our algorithm. 

Here we select the original results and current results of one publication “Distributed 

Scheduling Scheme For Video Streaming Over Multi-channel Multi-radio Multi-hop Wireless 

Networks”(2010 Liang Zhou, Xinbing Wang) for comparing and discussion. 

 

Figure 4. Recommends with Original Algorithm 

 



Figure 5. Recommends with Hybrid-Based Recommender System 

Future Work 

The performance of CNN is not good enough. The first reason may be the structure of the CNN 

model. Since the meaning of a text is determined not only by whether the words appeared but 

also by the positions and orders of words. This CNN model has only one layer, and the pooling 

method is max-pooling, which means it will never ingest the position information of the text. 

Thus, we will find a better model to handle the task, and GRU can be a good choice. 

The second reason is the training way. What we hope to get is the ability to recognize different 

papers, but the current output label is which field the paper belongs to. So, this training method 

is not necessarily means the ability to recognize different papers. What we will do is to find a 

better training way. 

The third reason is the noise in data. Our data is the abstracts of publication, and we assume 

that the abstract has very similar feature as the whole context. Many abstracts in our database, 

however, are incorrect, which includes messy codes or even is totally wrong information. So, we 

will contact scrambler group to refine the abstract data. 

The time cost of the whole algorithm is too high. The complexity of the algorithm is O(n^2). 

This cannot be reduced at least for now, and there is no more power servers. Thus, the only 

choice for us is to deploy a distributed calculating system based on Hadoop to accelerate the 

calculation. 
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