Navigation Bar-3D Dynamic Map

Changan Chen

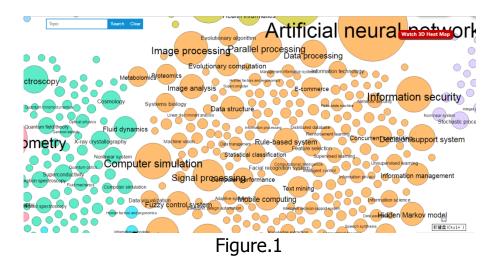
With member: Shuqi Feng, Dong Liu

5140309179

June 17,2017

Content:

1.	Abstar	ct	.2
2.	Motivation3		
	2.1	Why Dynamic?	.3
	2.2	How Dynamic?	.4
3.	Navigation-Bar Construction6		
	3.1	Use Guide	6
	3.2	Frame and code	8
4.	3D Dy	namic Map	.9
	4.1	Brief Rules	9
	4.2	Expand Mode	.10
	4.3	Explore Mode	.11
	4.4	Frame and code	12
5.	Back-e	end and Database	13
6.	Future	e work	14


1.Abstact

Acemap is an integrated academic search system with vivid data visualization, which is presented on website as four maps: Academic map, Affiliation map, Topic map and Co-author map. Here inspired by the function of Topic map and the visualization of 3D-Heat map, we come up with a new idea by constructing a new map that after one or two levels of matching, it originates from just one point and it expands as the users click on whatever they like. Theoretically, the whole map has two parts: The Navigation-Bar and the main Dynamic Map. The function of navigation is to make the search more targeted and play the role of ambiguous matching. Then it links to the dynamic map, which has two modes and three layers: expand mode and explore mode for the detailed information, Author-Paper-Conference-Layers to visualize the data.

2. Motivation

2.1 Why dynamic?

The core is user-friendly. Sometimes visualization is a doubleedged sword. The scene is considerably magnificent and of great meaning, however when it comes to searching for details, the visualization is somewhat disabled. Let us see Figure.1 and we will find it quite difficult to filter the useful information out.

Secondly there comes the redundancy. For daily searching, we do not need so many irrelevant messages shown up. Direct way is somewhat more popular and accepted. Our design of new map gets rid of the waste information and uses navigation bar to catch the users' eyes and make them easily accessible to desired details. Meanwhile the dynamic part is also from one point, which turns out to be elaborate.

Last but not least the relationship between data is of great significance to users. Our design focuses on this and starts from three layers: author, paper and conference.

2.2 How Dynamic?

Generally speaking, we perform our design into three stages. First stage is navigation. We have two levels of matching here. For the first level, we present 10 hottest topic that extracted from topic map as shown in Figure.2

i Biology	Chemistry	Comp	uter Science	Ecnomics	Engineering
i iii Geology	y Mathem		I Medicine	Physics	Psychology

Then the users find the desired topic and click it into the second level. Here we give the example of Computer Science in Figure.3

Artificial neural Network	Computer Simul	ation Data Structure	Data Processing
Constant Support System	Expert System	r 🖝 Hidden Markov Model	Trage Processing
Friet Information Security	Aachine Learning	Computing	Parellel Processing

Figure.3

These two matching give an ambiguous searching for the wanted information. After click the button again, we get into the map. If we cannot get the desired button we can also use the search box below. In the design of map, we initially present it as 3 points as in Figure.4 . Then we can expand it or explore it as in Figure.5. The style is just like a spreading random net.

Figure.4

Figure.5

3.Navigation Bar Construction

3.1 Use Guide

In index.html we can find the main page of navigation shown as Figure.6. The Background images are in the style of the sliding image which is extracted from four main maps' background from the current acemap system, which interprets that our dynamic map is a cluster. It shows the whole image of the topic map and when we hover on the specific classification, the image below will turn to the 3D-heat map according to the topic the users choose.

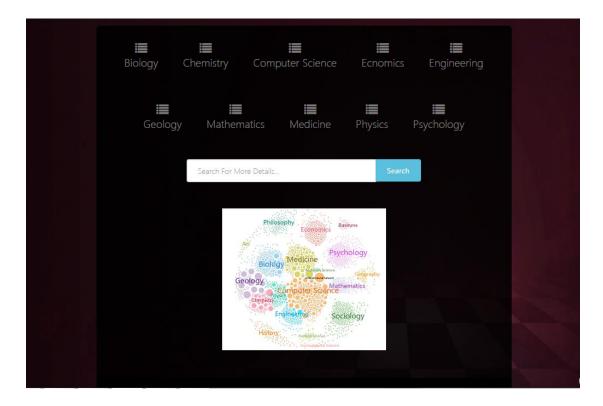


Figure.6

This is the first level matching. If the user cannot find their desired topic on the buttons, they can also use the navigation box as another option. When we get into the second level matching,

which is shown in Figure.7 (take mathematics as an example) and We will find the more specific classification of the main topic for users to choose. Once a button is chosen, the users will finally get into the main page of 3D dynamic map.

Figure.7

3.2 Frame and code

Here we use the same frame as the main page of acemap: Bootstrap. It has a lot of JS and CSS styles for us to use in an elaborate way. Below Figure.8 is the main part of the index.html

Others html files remain the same style. Totally there are 10 html files for each topic and one index.html for hyper-linking.

1	<pre>(li><a data-tab="1" href="#" onclick="javascript:window.location.href='Biology.html'" onmouseout="noshow()" onmouseover="showpic1()"></pre>
	 Biology
	<pre><a data-tab="2" href="#" onclick="javascript:window.location.href='Chemistry.html'" onmouseout="noshow()" onmouseover="showpic2()"></pre>
	 Chemistry
1	<pre><a "<="" data-tab="" href="#" onclick="javascript:window.location.href='computerscience.html'" onmouseout="noshow()" onmouseover="showpic3()" pre=""></pre>
	<pre>Computer Science</pre>
	<pre>xlixa href="#" onmouseout="noshow()" onmouseover="showpic4()" onclick="javascript:window.location.href='Ecnomics.html'" data-tab="4" ></pre>
	<pre>Ecnomics</pre>
	<pre>(li><a data-tab="5" href="#" onclick="javascript:window.location.href='Engineering.html'" onmouseout="noshow()" onmouseover="showpic5()"></pre>
	<pre>Engineering</pre>
	<pre>(li>a href="#" onmouseout="noshow()" onmouseover="showpic6()" onclick="javascript:window.location.href='Geology.html'"data-tab="6" ></pre>
	<pre>Geology</pre>
	<pre>(li>a href="#" onmouseout="noshow()" onmouseover="showpic7()" onclick="javascript:window.location.href='Mathematics.html'" data-tab="7" ></pre>
	<pre>Mathematics</pre>
	<pre>(li><a data-tab="8" href="#" onclick="javascript:window.location.href='Medicine.html'" onmouseout="noshow()" onmouseover="showpic8()"></pre>
	<pre>//span>Medicine//a></pre>
	<pre>(li><a data-tab="9" href="#" onclick="javascript:window.location.href='Physics.html'" onmouseout="noshow()" onmouseover="showpic9()"></pre>
	<pre>Physics</pre>
	<pre>x1i>xa href="#" onmouseout="noshow()" onmouseover="showpic10()" onclick="javascript:window.location.href='Psychology.html'" data-tab="10"</pre>
	<pre>Psychology</pre>

Figure.8

Here is the sliding background image part Figure.9 (we use the same java-script as the initial index of acemap)

4. 3D Dynamic Map

4.1 Brief Rules

When we link to the main map from the navigation bar, we will notice that there are three points shown in the center of the container. Under the container lies four boxes and a button called 'reset'. The first three boxes represent the three layers that shown in the container and the users decide which to reveal or conceal. Obviously the button is to reset the choice to original style. The initial dynamic page is shown in Figure.10 in the following.

Here in order to have a good experience of viewing, we put the x,y,z axis and the whole block visible.

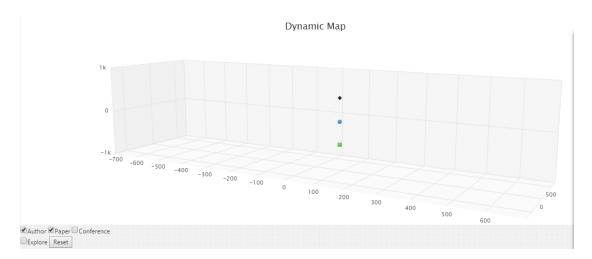


Figure.10

4.2 Expand mode

As mentioned above, the first three boxes is to choose which layers to be visible, the last box represents the mode we choose. Typically, we have two modes. Here comes the first mode: Expand.

Expand mode is to transform the original three points to large numbers of points. By just a click and the user will experience the net-like 3D spreading movement of the whole point. The more relevant the points are, the more closer the points will be shown . It can be called as a ambiguous cluster of points. Meanwhile The distribution of these points is randomly calculated.

Our expanding role is to select approximately the most relevant 10 papers that have the most impact on the original one (like influenced by authors, citations and so on) The data is extracted from the database by our group.

Here we give you an example of three-click expand mode in Figure.11. The related paper is listed under the container.

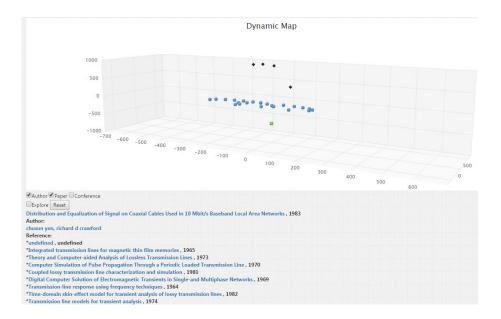


Figure.11

4.3 Explore Model

If the user choose the 'explore' button then the whole map will stop expanding and try to find the relationship between each other. If we click the point in the paper layer, the back-end will draw a line connected to the father paper (the father point). Also when we click the author layer's point, it will connect with the author's paper in paper layer and automatically draw many lines to connect all the points that is relevant to this paper in paper layer.

If you feel a little abstract, here comes the Figure.12 to give you a better understanding of the process.

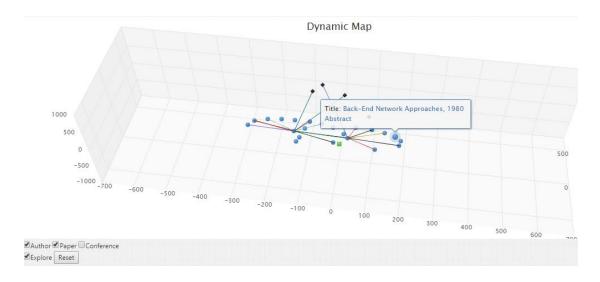


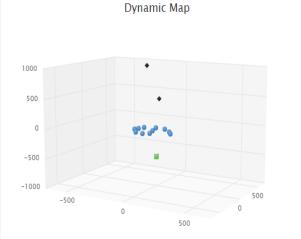
Figure.12

4.4 Frame and code

We use D3.js to accomplish the data visualization and use the Highchart.js to accomplish the 3D model (in Figure.13) When it comes to the process of adding lines , see Figure.14.

```
// Give the points a 3D feel by adding a radial gradient
Highcharts.getOptions().colors = $.map(Highcharts.getOptions().colors, function (color) {
    return {
        radialGradient: {
           cx: 0.4.
           cy: 0.3,
            r: 0.5
        },
        stops: [
            [0, color],
            [1, Highcharts.Color(color).brighten(-0.2).get('rgb')]
        ]
    1;
});
var renderer = new Highcharts.Renderer(
        $('#container')[0],
        400,
        400
);
```

Figure.13


```
function addLine(p,q) {
    if (!hashMap.contains(p) || !hashMap.contains(q)) return;
    var id1=hashMap.get(p),type1;
    if (p[0]=='P') type1=0;
    else if (p[0]=='A') type1=1;
    else if (p[0]=='C') type1=2;
    var x=chart.series[type1].data[id1].x+0.00001,
        y=chart.series[type1].data[id1].y+0.00001,
        z=chart.series[type1].data[id1].z+0.00001;
    var id2=hashMap.get(q),type2;
    if (q[0]=='P') type2=0;
    else if (q[0]=='A') type2=1;
    else if (q[0]=='C') type2=2;
    var tx=chart.series[type2].data[id2].x+0.00001,
        ty=chart.series[type2].data[id2].y+0.00001,
        tz=chart.series[type2].data[id2].z+0.00001;
    chart.series[type1].data[id1].color=chart.series[type1].color;
    chart.series[type2].data[id2].color=chart.series[type2].color;
    chart.addSeries({
        type:'scatter',
        data: [[x,y,z],[tx,ty,tz]],
        marker: {
            enabled: false
        1.
        lineWidth:1
    1);
```

5 Back-end and database

This part is to extract datasets from our database using sql. Although our current design doesn't use the data that extracted from the database and as an instead directly consults the data on database, we find it necessary to use it for faster speed and well fluency. Below three pictures show our work of extracting and we put the message on the console of the website.(Figure.15,16,17)

hashMap ▶Object result?q=data:779 move highcharts.src.is:13047 click! result?q=data:321 ▶H.Point {series: object, color: Object, proceed: null, x: 49.42913948391548, y: 0} result?q=data:321 >H.Point {series: object, color: Object, proceed: null, x: 49.42913948391548, y: 0} result?q=data:565 success result?q=data:324 > Dbject {fatherIndex: "0", refPaper: Array(10), refAuthor: Array(1), refConfer: Array(0), fatherType: 0} result?q=data:341 Papername P7EE80862 Fibernet: Multimode Optical Fibers for Local Computer Networks 1978 result?q=data:341 Papername P7CD2C081 The control data loosely coupled network lower level protocols 1980 result?q=data:341 Papername P7D8AE9 A theoretical performance analysis of polling and carrier sense result?q=data:341 collision detection communication systems 1981 result?q=data:341 Papername P77288585 An overview of the proposed american national standard for local result?q=data:341 Mbir/s Baseband Local Area Networks 1983 result?q=data:341 Papername P71828083 SILK: An Implementation of a Buffer Insertion Ring 1983 result?q=data:341 Papername P77288083 SILK: An Implementation of a Buffer Insertion Ring 1983 result?q=data:341 Papername P77482FE4 Back-End Network Approaches 1980 result?q=data:341		
click!result?a=data:321> H.Point {series: object, color: Object, proceed: null, x: 49.42913948391548, y: 0}result?a=data:321> H.Point {series: object, color: Object, proceed: null, x: 49.42913948391548, y: 0}result?a=data:321> H.Point {series: object, color: Object, proceed: null, x: 49.42913948391548, y: 0}result?a=data:321> bdject {fatherIndex: "0", refPaper: Array(10), refAuthor: Array(1), refConfer: Array(0), fatherType: 0}result?a=data:321Papername P7EE80862 Fibernet: Multimode Optical Fibers for Local Computer Networks 1978result?a=data:341Papername P7CD2C081 The control data loosely coupled network lower level protocols 1980result?a=data:341Papername P7EEB0F6A Evolution of the Ethernet Local Computer Network 1982result?a=data:341Papername P7799ACE9 A theoretical performance analysis of polling and carrier sense collision detection communication systems 1981result?a=data:341Papername P77288585 An overview of the proposed american national standard for local distributed data interfaces 1983result?a=data:341Papername P7AF8EFE4 Back-End Network 1980result?a=data:341Papername P7AF8EFE4 Back-End Network Approaches 1980result?a=data:341Papername P7AF8EFE4 Back-End Network Approaches 1980result?a=data:341Papername P7DA97425 An experimental distributed switching system to handle bursty computer traffic 1969result?a=data:341	hashMap ▶Object	<u>result?q=data:779</u>
▶ H.Point {series: object, color: Object, proceed: null, x: 49.42913948391548, y: 0} ▶ H.Point {series: object, color: Object, proceed: null, x: 49.42913948391548, y: 0} ▶ H.Point {series: object, color: Object, proceed: null, x: 49.42913948391548, y: 0} success result?a=data:565 ▶ Object {fatherIndex: "0", refPaper: Array(10), refAuthor: Array(1), refConfer: Array(0), fatherType: 0) Papername P7EE80862 Fibernet: Multimode Optical Fibers for Local Computer Networks 1978 result?a=data:341 Papername P7CD2C081 The control data loosely coupled network lower level protocols 1980 result?a=data:341 Papername P7CD2C081 The control data loosely coupled network lower level protocols 1980 result?a=data:341 Papername P7CD2C081 The control data loosely coupled network lower level protocols 1980 result?a=data:341 Papername P7CD92C081 The control data performance analysis of polling and carrier sense result?a=data:341 Papername P77288585 An overview of the proposed american national standard for local result?a=data:341 distributed data interfaces 1983 Papername P7268263 Are Networks 1983 result?a=data:341 Papername P72682003 SILK: An Implementation of a Buffer Insertion Ring 1983 result?a=data:341 Papername P7268203 SILK: An Implementation of a Buffer Insertion Ring 1983 result?a=data:341 Papername P72683003 SILK: An Implementation of a Buffer Insertion Rin	move <u>high</u>	charts.src.js:13047
success > Object {fatherIndex: "0", refPaper: Array(10), refAuthor: Array(1), refConfer: Array(0), fatherType: 0} Papername P7EE80862 Fibernet: Multimode Optical Fibers for Local Computer Networks 1978 result?q=data:341 Papername P7CD2C081 The control data loosely coupled network lower level protocols 1980 result?q=data:341 Papername P7CD2C081 The control data loosely coupled network lower level protocols 1980 result?q=data:341 Papername P7CD2C081 The control data loosely coupled network lower level protocols 1980 result?q=data:341 Papername P7CD2C081 The control data loosely coupled network lower level protocols 1980 result?q=data:341 Papername P7CD2C081 A theoretical performance analysis of polling and carrier sense collision detection communication systems 1981 Papername P77288585 An overview of the proposed american national standard for local result?q=data:341 distributed data interfaces 1983 Papername P8167CD79 Distribution and Equalization of Signal on Coaxial Cables Used in 10 Mbit/s Baseband Local Area Networks 1980 result?q=data:341 Papername P7AF8EFE4 Back-End Network Approaches 1980 result?q=data:341 Papername P7EA89003 SILK: An Implementation of a Buffer Insertion Ring 1983 result?q=data:341 Papername P7DA97425 An experimental distributed switching system to handle bursty computer traffic 1969		result?q=data:321
▶ Object {fatherIndex: "0", refPaper: Array(10), refAuthor: Array(1), refConfer: Array(0), fatherType: 0} Papername P7EE80862 Fibernet: Multimode Optical Fibers for Local Computer Networks 1978 result?q=data:341 Papername P7CD2C081 The control data loosely coupled network lower level protocols 1980 result?q=data:341 Papername P7CD2C081 The control data loosely coupled network lower level protocols 1980 result?q=data:341 Papername P7CD2C081 The control data loosely coupled network lower level protocols 1980 result?q=data:341 Papername P7CD2C081 The control data loosely coupled network lower level protocols 1980 result?q=data:341 Papername P7CD2C081 A theoretical performance analysis of polling and carrier sense collision detection communication systems 1981 result?q=data:341 Papername P7728855 An overview of the proposed american national standard for local distributed data interfaces 1983 result?q=data:341 Papername P8167CD79 Distribution and Equalization of Signal on Coaxial Cables Used in 10 result?q=data:341 Mbit/s Baseband Local Area Networks 1980 result?q=data:341 Papername P7AF8EFE4 Back-End Network Approaches 1980 result?q=data:341 Papername P7EA89003 SILK: An Implementation of a Buffer Insertion Ring 1983 result?q=data:341 Papername P7DA97458 An experimental distributed switching system to handle bursty computer traffic 1969 result?q=data:341	▶ H.Point {series: object, color: Object, proceed: null, x: 49.42913948391548, y: 0…}	result?q=data:566
Papername P7CD2C081 The control data loosely coupled network lower level protocols 1980 result?q=data:341 Papername P6EEDCF8A Evolution of the Ethernet Local Computer Network 1982 result?q=data:341 Papername P7799ACE9 A theoretical performance analysis of polling and carrier sense collision detection communication systems 1981 result?q=data:341 Papername P7288585 An overview of the proposed american national standard for local distributed data interfaces 1983 result?q=data:341 Papername P8167CD79 Distribution and Equalization of Signal on Coaxial Cables Used in 10 result?q=data:341 Mbit/s Baseband Local Area Networks 1983 result?q=data:341 Papername P7AF8EFE4 Back-End Network Approaches 1980 result?q=data:341 Papername P7DA97425 An experimental distributed switching system to handle bursty computer traffic 1969 result?q=data:341		
Papername P6EEDCF8A Evolution of the Ethernet Local Computer Network 1982 result?q=data:341 Papername P7799ACE9 A theoretical performance analysis of polling and carrier sense collision detection communication systems 1981 result?q=data:341 Papername P77288585 An overview of the proposed american national standard for local distributed data interfaces 1983 result?q=data:341 Papername P71288585 An overview of the proposed american national standard for local distributed data interfaces 1983 result?q=data:341 Papername P8167CD79 Distribution and Equalization of Signal on Coaxial Cables Used in 10 result?q=data:341 Mbit/s Baseband Local Area Networks 1983 result?q=data:341 Papername P7AF8EFE4 Back-End Network Approaches 1980 result?q=data:341 Papername P7DA97425 An experimental distributed switching system to handle bursty computer traffic 1969 result?q=data:341	Papername P7EE80862 Fibernet: Multimode Optical Fibers for Local Computer Networks 1978	result?q=data:341
Papername P7799ACE9 A theoretical performance analysis of polling and carrier sense collision detection communication systems 1981 result?q=data:341 Papername P7728B585 An overview of the proposed american national standard for local distributed data interfaces 1983 result?q=data:341 Papername P7128B585 An overview of the proposed american national standard for local distributed data interfaces 1983 result?q=data:341 Papername P8167CD79 Distribution and Equalization of Signal on Coaxial Cables Used in 10 Mbit/s Baseband Local Area Networks 1983 result?q=data:341 Papername P7AF8EFE4 Back-End Network Approaches 1980 result?q=data:341 Papername P7EA89D03 SILK: An Implementation of a Buffer Insertion Ring 1983 result?q=data:341 Papername P7DA97425 An experimental distributed switching system to handle bursty computer traffic 1969	Papername P7CD2C0B1 The control data loosely coupled network lower level protocols 1980	result?q=data:341
collision detection communication systems 1981 result?g=data:341 Papername P77288585 An overview of the proposed american national standard for local distributed data interfaces 1983 result?g=data:341 Papername P8167CD79 Distribution and Equalization of Signal on Coaxial Cables Used in 10 result?g=data:341 Mbit/s Baseband Local Area Networks 1983 result?g=data:341 Papername P7AR8EFE4 Back-End Network Approaches 1980 result?g=data:341 Papername P7EA89D03 SILK: An Implementation of a Buffer Insertion Ring 1983 result?g=data:341 Papername P7DA97425 An experimental distributed switching system to handle bursty computer traffic 1969 result?g=data:341	Papername P6EEDCF8A Evolution of the Ethernet Local Computer Network 1982	result?q=data:341
distributed data interfaces 1983 result?q=data:341 Papername PR167CD79 Distribution and Equalization of Signal on Coaxial Cables Used in 10 result?q=data:341 Mbit/s Baseband Local Area Networks 1983 result?q=data:341 Papername P7AF8EFE4 Back-End Network Approaches 1980 result?q=data:341 Papername P7EA89003 SILK: An Implementation of a Buffer Insertion Ring 1983 result?q=data:341 Papername P7DA97425 An experimental distributed switching system to handle bursty computer traffic 1969 result?q=data:341		result?q=data:341
Mbit/s Baseband Local Area Networks 1983 Papername P7AF8EFE4 Back-End Network Approaches 1980 Papername P7EA89D03 SILK: An Implementation of a Buffer Insertion Ring 1983 Papername P7DA97425 An experimental distributed switching system to handle bursty computer traffic 1969		result?q=data:341
Papername P7EA89D03 SILK: An Implementation of a Buffer Insertion Ring 1983 result?a=data:341 Papername P7DA97425 An experimental distributed switching system to handle bursty computer traffic 1969		result?q=data:341
Papername P7DA97425 An experimental distributed switching system to handle bursty result?a=data:341 computer traffic 1969	Papername P7AF8EFE4 Back-End Network Approaches 1980	result?q=data:341
computer traffic 1969	Papername P7EA89D03 SILK: An Implementation of a Buffer Insertion Ring 1983	result?q=data:341
Papername P7F3CD4C6 Local-Area Subnetworks: A Performance Comparison 1981 result?q=data:341		result?q=data:341
	Papername P7F3CD4C6 Local-Area Subnetworks: A Performance Comparison 1981	result?q=data:341
author A7D36F287 william stallings <u>result?q=data:371</u>	author A7D36F287 william stallings	result?q=data:371

Figure.16

Figure.17

6.Future work

We haven't complete our work yet. The conference part is empty now and the dataset is not fully prepared, which remains to be done. Also the connection between navigation bar and 3D dynamic map need more discussion.

In conclusion, this term we establish the dynamic map to 75%, and we feel pleased about what we have done. We will try our best to accomplish this work.

Dynamic map team

2015.5.17