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1 Introduction 

Nowadays, more and more institutions and social networking platforms tend to prevent 

sensitive information such as rumors, personal information or trade secrets from spreading. In some 

special cases such as explosion of a new computer virus in the network or political campaign in the 

social network, the cascading of rumors or virus is not desirable.  

Consider the following scenario in our daily life: A has same probability to share information 

with B and C, who are the only two neighbors of A. It means that A has the same probability to leak 

sensitive information or privacy to B and C. Suppose that we know in a certain period, A has certain 

probability to spread sensitive information to its neighbors. At the meantime, A is informed that B 

is a ‘gossiper’, which means that B has higher probability to forward information received to more 

people. Under these facts, one obvious solution for A to protect its privacy from spreading is to ‘talk’ 

less to B. Notwithstanding, it doesn’t seem practical to limit the diffusion of information transmitted 

by A. To maintain the entropy A is forwarding, A should ‘talk’ less to B but ‘talk’ more to C. We 

can see that there are some common acknowledgements when it comes to protecting the sensitive 

information: 1) Limiting the diffusion of information just for protecting sensitive information is not 

practical. 2) In order to maintain the overall flowing and transmissions in the current network, the 

structure of the network should be altered as little as possible. In certain scenarios the circumstance 

around the infected nodes may not be known to all.  

In my project, I use a strategy based on probability adjustment of information transmission to 

achieve this target. I design the algorithms for probability adjustment both in the background of 

informed network and uninformed network. My work can be separated into three parts. In the first 

part, I build and analyze the Dynamic Routes Model, turn the problem into a convex optimization 

problem and design Algorithm I for probability adjustment in the informed network. In the second 

part, I use the Multi-arm bandit to analyze the situation in the uninformed network. And I design 

Algorithm II to find the optimal solution used in the uninformed network. In the last part, I simulate 

and obtain some experimental results from existing data.  

2 System Model 

2.1 Dynamic Routes Model 

Let 𝐺 = (𝑁, 𝐸) be a connected network with a set of finite nodes 𝑁 = {1,2, … , 𝑛} and a set 

of links 𝐸. In this paper, we assume that the evolution of the network structure is much slower 

compared with the speed of information spreading, and thus can be neglected. The nodes have no 

difference except for sensitive level. A node is either a sensitive node or a normal node. Sensitive 

information can only be transmitted from a sensitive node to a normal node. In Dynamic Routes 

Model, information can flow from node 𝑖 to node 𝑗 and vice versa as long as there is an 

undirected path between 𝑖 and 𝑗, denoted by (𝑖, 𝑗) ∈ E. I assume that G has no self-loops and 

no multiple links between any two nodes. Let |𝑆(𝑡)| be the size of the infected node set (or 



simply the number of infected nodes) at time 𝑡. To keep the notation simple, we will also use 

𝑆(𝑡) to represent the set of infected notes at time 𝑡, 𝑖. 𝑒. , {𝑖 ∈ 𝑁|𝑆𝑖(𝑡) = 1} and ∂𝑆(𝑡) to 

represent the set of edges originating from 𝑆(𝑡) to 𝑁\𝑆(𝑡) at time 𝑡. We allow that the 

diffusion starts from a single user (|𝑆(0)| = 1) or a connected initial component (𝑆(0) > 1). 

Clearly, all the infected nodes remain connected at any time 𝑡 > 0. Let 𝑁(𝑆(𝑡)) =

{𝑗 ∈ 𝑁\𝑆(𝑡) | ∃(𝑖, 𝑗) ∈ 𝐸, 𝑖 ∈ 𝑆(𝑡)} be the set of ‘neighbors’ of the infected nodes at time t, and 

∂(𝑆(𝑡), 𝑗) = {(𝑖, 𝑗) ∈ 𝐸 |𝑖 ∈ 𝑆(𝑡), 𝑗 ∈ 𝑁(𝑆(𝑡))} be the set of edges originating from 𝑆(𝑡) to the 

neighboring node 𝑗. For each 𝑟 ∈ ∂𝑆(𝑡), it has a parameter 𝛽𝑟, which is the probability of 

sensitive information on this route. I assume that 𝛽𝑟 ≪ 1 in our model because sensitive 

information diffusion is not frequent. 

 

Fig 1. The red nodes form set 𝑆(𝑡), the yellow routes form set ∂𝑆(𝑡). 

 

Fig 2. Possible change from 𝑆(𝑡) and ∂𝑆(𝑡) to 𝑆(𝑡 + 1) and ∂𝑆(𝑡 + 1) 

Normally, sensitive information is time-sensitive. So I assume that 𝛾 nodes will change 

from sensitive node to normal node during each time slot. 

2.2 Informed and Uninformed Network 

The Informed Network refers to network whose structure is known beforehand. For instance, 

the network in Fig 1. is an Informed Network. Conversely, we can define network whose structure 

is ambiguous as Uninformed Network. In this type of network, we can only know certain part of the 

network. In some cases, when it comes to monitoring the sensitive information, we can only know 



the sensitive region, which means we only know which nodes are sensitive ones and their 

relationships.  

 

Fig 3. We cannot know what’s going on with normal nodes 

2.3 Multi-arm Bandit 

The multi-armed bandit problem for a gambler is to decide which arm of a K-slot machine to 

pull to maximize his total reward in a series of trials. Many real-world learning and optimization 

problems can be modeled in this way. We can model the scenario of probability adjustment in 

uniformed network as multi-arm bandit. In most case, users or rumor protectors are always familiar 

with the sensitive region, which means they know about the sensitive nodes and the relationship 

among those nodes. However, the situation outside such region can be ambiguous. If there is a 

certain period of time many rumors are being spread such as political activity and we want to take 

control of the spreading of these rumors, we may want to know about the outside as much as possible 

and leak as little rumors as possible at the main time. Which is to say, within certain steps, we have 

to maximize the reward, say, minimize the infected nodes as much as possible. The case can be 

simplified as a multi-arm bandit problem. 

We can use the same notation mentioned in 2.1 and model the uninformed network as a multi-

arm bandit model. Here set ∂𝑆(𝑡) is the target paths we want to make adjustment to. Let 𝐴 be the 

set of ‘arms’ we can choose from. We assume that the initial transmission probability of each path 

is 𝛽 , and the upper bound and lower bound probability of each path are 𝛽𝑚𝑖𝑛  and 𝛽𝑚𝑎𝑥 , 

respectively. (The assumption of upper bound and lower bound originates from the previous fact 

that we have to change the structure of network as little as possible. In the Uninformed Network, 

however, we cannot do calculation due to lack of data. As a result, an upper bound and a lower 

bound is provided beforehand.) Each time, I select two elements belonging to ∂𝑆(𝑡) and adjust 

their probabilities (detailed procedure will be discussed in the later chapter). The reason I choose 

two elements is because for fixed 𝑛 , of all the 𝐶𝑛
𝑘, (𝑘 = 2, 3, … , 𝑛 − 1), 𝐶𝑛

2  is the smallest, 

through which I can minimize the size of 𝐴.  

3 Dynamics analysis 

3.1 Informed network 

In order to illustrate the impact of probability adjustment on the informed network, I target 

| ∂𝑆(𝑡)| as analyzing object. From the assumption from 2.1, we can know that at time 𝑡 , the 

probability for the destination node of 𝑗 (𝑗 ∈ 𝜕𝑆(𝑡)) to get involved into the sensitive region is 

1 − (1 − 𝛽𝑗)
|∂(𝑆(𝑡),𝑗)|

, we can obtain the expectation of variable quantity in set ∂𝑆(𝑡), which is: 

∆1≜ 𝐸[|∂S(t + 1)| − |∂S(t)|] = ∑ [1 − (1 − 𝛽𝑗)
|∂(𝑆(𝑡),𝑗)|

](𝑑𝑗 − |∂(𝑆(𝑡), 𝑗)|)

𝑗∈𝜕𝑆(𝑡)

 



We can simplify the right side of the equality by Taylor Expansion Formula, and we can get: 

∆1 = ∑ 𝛽𝑗|∂(𝑆(𝑡), 𝑗)|(𝑑𝑗 − |∂(𝑆(𝑡), 𝑗)|)

𝑗∈𝜕𝑆(𝑡)

 

Assuming the network subjects to Power-Law distribution, thus we can rewrite |∂(𝑆(𝑡), 𝑗)| as: 

|∂(𝑆(𝑡), 𝑗)| =  ∑
𝑑𝑖𝑑𝑗

∑ 𝑑𝑚
𝑁
1𝑖∈𝑆(𝑡)

 

And we can get: 

∆1 = ∑ 𝛽𝑗 ∑
𝑑𝑖𝑑𝑗

∑ 𝑑𝑚
𝑁
1𝑖∈𝑆(𝑡)

(𝑑𝑗 − ∑
𝑑𝑖𝑑𝑗

∑ 𝑑𝑚
𝑁
1𝑖∈𝑆(𝑡)

)

𝑗∈𝜕𝑆(𝑡)

 

Recall from 2.1 that there are 𝛾 nodes moving from S(t) to 𝑁\S(t), we can write this part of 

change by 

∆2 = 𝛾( ∑
𝑑𝑖

∑ 𝑑𝑚
𝑁
1𝑖∈𝑆(𝑡)

− ∑
𝑑𝑖

∑ 𝑑𝑚
𝑁
1𝑖∈𝑁\𝑆(𝑡)

)𝐷 

Where 𝐷 is the average degree in the network. Let ∆1=  ∆2, and we can get the following result: 

∑ 𝛽𝑗𝑑𝑗
2 =

∑
𝑑𝑖

∑ 𝑑𝑚
𝑁
1

𝑖∈𝑆(𝑡) (1 − ∑
𝑑𝑖

∑ 𝑑𝑚
𝑁
1

𝑖∈𝑆(𝑡) )

(∑
𝑑𝑖

∑ 𝑑𝑚
𝑁
1

𝑖∈𝑆(𝑡) − ∑
𝑑𝑖

∑ 𝑑𝑚
𝑁
1

𝑖∈𝑁\𝑆(𝑡) )𝐷

|𝜕𝑆(𝑡)|

𝑗=1

 𝛾 

Make 𝐶 ≜
∑

𝑑𝑖

∑ 𝑑𝑚
𝑁
1

𝑖∈𝑆(𝑡) (1− ∑
𝑑𝑖

∑ 𝑑𝑚
𝑁
1

𝑖∈𝑆(𝑡) )

(∑
𝑑𝑖

∑ 𝑑𝑚
𝑁
1

𝑖∈𝑆(𝑡) − ∑
𝑑𝑖

∑ 𝑑𝑚
𝑁
1

𝑖∈𝑁\𝑆(𝑡) )𝐷
, which is an bounded constant, the equality can be 

simplified as∑ 𝛽𝑗𝑑𝑗
2 = 𝐶𝛾

|𝜕𝑆(𝑡)|
𝑗=1 . If 𝛾 is increased, say, due to environmental interference. We can 

rewrite the equality to a differential form: 

∑ (𝛽𝑗 + ∆𝛽𝑗)𝑑𝑗
2 = 𝐶(𝛾 + ∆𝛾)

|𝜕𝑆(𝑡)|

𝑗=1

 

Which is: 

∑ ∆𝛽𝑗𝑑𝑗
2 = 𝐶∆𝛾

|𝜕𝑆(𝑡)|

𝑗=1

 

Recall from the previous chapters that we have some limitations of protections. First of all, 

∆𝛽𝑗 is obviously bounded. It can be expressed as: 

|∆𝛽𝑗 − 𝛽𝑐| ≤ 0 , 𝑗 ∈ 𝜕𝑆(𝑡) 

Where 𝛽𝑐 is a constant. The output entropy should stay as a constant, which means that overall 

∆𝛽𝑗 should be 0. It can be expressed as: 

∑ ∆𝛽𝑗 = 0

|𝜕𝑆(𝑡)|

𝑗=1

 

Also, as stated before, we should make change to the network as little as possible. Here I denote 

change as 𝛿, and 𝛿 =  ∑ ∆𝛽𝑗
2|𝜕𝑆(𝑡)|

𝑗=1 . Here I don’t use ABS function because it is not differentiable. 



As a result, I change the problem above into: 

Minimize: 

𝛿 =  ∑ ∆𝛽𝑗
2

|𝜕𝑆(𝑡)|

𝑗=1

 

Subject to: 

∑ ∆𝛽𝑗𝑑𝑗
2 = 𝐶∆𝛾

|𝜕𝑆(𝑡)|

𝑗=1

 

∑ ∆𝛽𝑗 = 0

|𝜕𝑆(𝑡)|

𝑗=1

 

|∆𝛽𝑗 − 𝛽𝑐| ≤ 0 , 𝑗 ∈ 𝜕𝑆(𝑡) 

which is a classical convex optimization problem. Due to the number of variables, I use the iteration 

algorithm to solve this problem. And Algorithm I here can be used to solve this problem: 

 

Algorithm I 

Initiate 𝜆0, ∆𝛽0 

𝑘 ← 0 

𝑑0 ← 𝑎𝑟𝑔𝑚𝑖𝑛{∇𝛿(∆𝛽0)𝑇𝑑} 

While 

 If 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 or 𝑑𝑘 = 0 

  Break 

 Else 

  𝑘 ← 𝑘 + 1 

  𝑑𝑘 ← 𝑎𝑟𝑔𝑚𝑖𝑛{∇𝛿(∆𝛽𝑘−1)𝑇𝑑} 

  𝜆𝑘 ← 𝑎𝑟𝑔𝑚𝑖𝑛{𝛿(∆𝛽𝑘−1 + 𝜆𝑘−1𝑑𝑘−1)} 

  ∆𝛽𝑘 ← ∆𝛽𝑘−1 + 𝜆𝑘𝑑𝑘 

End 

 

3.2 Uninformed network 

As discussed in 2.3, in given time, our target is to minimize the nodes receiving sensitive 

information under the background of uninformed network. First we have to initiate set 𝐴. This is 

done by adjusting transmission probability of two routes selected from ∂𝑆(𝑡). Considering of our 

task is time-sensitive, I combine 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦  and 𝑈𝑝𝑝𝑒𝑟 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐵𝑜𝑢𝑛𝑑  strategy and 

design Algorithm II as follows:  

 

Algorithm II 

𝐴 ← {} 

𝑅 ← 𝟎|𝐴| 

𝑇 ← 𝑡𝑖𝑚𝑒 

For 𝑖 ∈ ∂𝑆(𝑡) 

 For 𝑗 ∈ ∂𝑆(𝑡)\{𝑖} ∩ {𝑘 | 𝑝(𝑘) < 𝑝(𝑖)} 



  If 
𝑝(𝑖)+𝑝(𝑗)

2
>

𝛽𝑚𝑖𝑛+𝛽𝑚𝑎𝑥

2
 

   𝑝′(𝑖) ← 𝛽𝑚𝑎𝑥 

   𝑝′(𝑗) ← 𝑝(𝑖) + 𝑝(𝑗) − 𝛽𝑚𝑎𝑥 

   action ← { 𝑝′(𝑖), 𝑝′(𝑗)} 

  Else 

   𝑝′(𝑖) ←  𝑝(𝑖) + 𝑝(𝑗) − 𝛽𝑚𝑖𝑛 

   𝑝′(𝑗) ← 𝛽𝑚𝑖𝑛 

   action ← { 𝑝′(𝑖), 𝑝′(𝑗)} 

  𝐴 ← action 

 End 

End 

For t ← 1 to T 

 If 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) < 𝜀 

  𝑎𝑐𝑡𝑖𝑜𝑛 ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝐴)  

 Else 

  𝑎𝑐𝑡𝑖𝑜𝑛 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎[𝑄𝑡(𝑎) + 𝑐√
ln (𝑡)

𝑁𝑡(𝑎)
] 

 𝑅 ← 𝑏𝑎𝑛𝑑𝑖𝑡(𝑎𝑐𝑡𝑖𝑜𝑛) 

 𝑄𝑡+1 ← (1 − 𝛼)𝑛𝑄1 + ∑ 𝛼(1 − 𝛼)𝑡−𝑖𝑅𝑡
𝑡
𝑖=1  

End 

 

4 Experiment and Analysis 

 
Fig 4. Comparison between using the strategy and not using the strategy 

We can see that the main effects of transmission probability adjustment on a given graph is 

delaying the diffusion of sensitive information. 

Results of uninformed network are as follows: 

For graph with Power-Law distribution: 



 

Fig 5. Result of optimal action rate using 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 method 

 

Fig 6. Result of average infected nodes using 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 method 

For graph with uniform distribution: 

 

Fig 7. Result of optimal action rate using 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 method 



 

Fig 8. Result of average infected nodes using 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 method 

5 Conclusion 

(To be continued…About to finish before week 15.) 
 


