
Hive Queries Optimization Based on Acemap

Shiyuan Zhan

Database Group

Table of Contents

Hive Queries Optimization Based on Acemap . 1

Introduction . 1
1 Introduction . 1

1.1 background . 1
1.2 Goals . 1

2 Environment . 2
2.1 HDFS . 2
2.2 Mapreduce . 2

3 Implementation . 3
3.1 Features . 3
3.2 Architecture . 4
3.3 Installment . 5

4 Result . 6
4.1 Evaluation of HIVE . 6
4.2 Discussion about Cache . 7

5 Conclusion . 7

1 Introduction

1.1 background

Since nowadays the amount of the data on the internet grows much larger than
before, it is necessary to use some corresponding platform to computer and pro-
cess such big data. Hadoop is such a platform which consists of hdfs and mapre-
duce framework. Similarly, our acemap also need to handle big data, therefore
our search engine group began to construct a Hadoop ecosystem and we will use
some new query methods to handle these big data such as hive. I am responsible
for the construction of hive and UI design for the database.

1.2 Goals

In the project, I mainly accomplished these goals: 1. familiar with Hadoop clus-
ter. 2. Optimize queries with Hive. 3. Compare the queries with Mysql. 4.Do
some extra work about matching learning.

2 Shiyuan Zhan

2 Environment

The following is the environment on which I worked for this project. Hadoop

Started Tue Apr 18 17:29:30 CST 2017
Version 2.7.3

Configured Capacity 15.06 TB
Live Nodes 3

is an open source distributed data processing platform, it consists of hdfs and
mapreduce framework

2.1 HDFS

HDFS is the primary distributed storage used by Hadoop applications. A HDFS
cluster primarily consists of a NameNode that manages the file system meta-
data and DataNodes that store the actual data. The HDFS Architecture Guide
describes HDFS in detail.Followings are some features of HDFS:

1. Streaming Data Access
2. Simple Coherency Model
3. Large Data Sets
4. “Moving Computation is Cheaper than Moving Data”
5. Portability Across Heterogeneous Hardware and Software Platforms

HDFS has a master/slave architecture. An HDFS cluster consists of a single Na-
meNode, a master server that manages the file system namespace and regulates
access to files by clients. In addition, there are a number of DataNodes, usually
one per node in the cluster, which manage storage attached to the nodes that
they run on. HDFS exposes a file system namespace and allows user data to be
stored in files. Internally, a file is split into one or more blocks and these blocks
are stored in a set of DataNodes. The NameNode executes file system namespace
operations like opening, closing, and renaming files and directories. It also deter-
mines the mapping of blocks to DataNodes. The DataNodes are responsible for
serving read and write requests from the file system’s clients. The DataNodes
also perform block creation, deletion, and replication upon instruction from the
NameNode.

2.2 Mapreduce

A MapReduce job usually splits the input data-set into independent chunks
which are processed by the map tasks in a completely parallel manner. The
framework sorts the outputs of the maps, which are then input to the reduce
tasks. Typically both the input and the output of the job are stored in a file-
system. The framework takes care of scheduling tasks, monitoring them and

Hive Queries Optimization Based on Acemap 3

Fig. 1. NameNode and DataNodes

re-executes the failed tasks. We can look at MapReduce is as a 5-step parallel
and distributed computation:

1. Prepare the Map() input
2. Run the user-provided Map() code
3. "Shuffle" the Map output to the Reduce processors
4. Run the user-provided Reduce() code
5. Produce the final output

3 Implementation

As we know, Acemap used to use Mysql to do database queries. Mysql is not
suitable for big data such as academic database. So we decide to turn to other
methods of queries. I am in charge of HIVE optimization. I will introduce HIVE
in this part first.

3.1 Features

The folowing are the features of HIVE

1. Tools to enable easy access to data via SQL, thus enabling data warehousing
tasks such as extract/transform/load (ETL), reporting, and data analysis.

2. A mechanism to impose structure on a variety of data formats

4 Shiyuan Zhan

3. Access to files stored either directly in Apache HDFSTM or in other data
storage systems such as Apache HBaseTM

4. Query execution via Apache TezTM, Apache SparkTM, or MapReduce
5. Procedural language with HPL-SQL
6. Sub-second query retrieval via Hive LLAP, Apache YARN and Apache Slider.

3.2 Architecture

The components of Architecture can be diveded into 3 parts:Metastore,Driver
and UI.
Metastore stores metadata for each of the tables such as their schema and loca-
tion. It also includes the partition metadata which helps the driver to track the
progress of various data sets distributed over the cluster. The data is stored in
a traditional RDBMS format. The metadata helps the driver to keep a track of
the data and it is highly crucial. Hence, a backup server regularly replicates the
data which can be retrieved in case of data loss.
Driver acts like a controller which receives the HiveQL statements. It starts
the execution of statement by creating sessions and monitors the life cycle and
progress of the execution. It stores the necessary metadata generated during the
execution of an HiveQL statement. The driver also acts as a collection point of
data or query result obtained after the Reduce operation.
CLI, UI, and Thrift Server are command Line Interface and UI (User Interface)
allow an external user to interact with Hive by submitting queries, instructions
and monitoring the process status. Thrift server allows external clients to inter-
act with Hive just like how JDBC/ODBC servers do.

Fig. 2. NameNode and DataNodes

Hive Queries Optimization Based on Acemap 5

3.3 Installment

And then I will introduce how to install HIVE on an HDFS and run your first
code on HIVE. First we need to reach these requirements:

1. Java 1.7 Note: Hive versions 1.2 onward require Java 1.7 or newer. Hive
versions 0.14 to 1.1 work with Java 1.6 as well. Users are strongly advised
to start moving to Java 1.8. Java in our cluster is 1.8.0.

2. Hadoop 2.x (preferred), 1.x (not supported by Hive 2.0.0 onward).Hive ver-
sions up to 0.13 also supported Hadoop 0.20.x, 0.23.x. Our Hadoop version
is 2.7.3

3. "Shuffle" the Map output to the Reduce processors
4. Run the user-provided Reduce() code
5. Produce the final output

Then download the recent stable release of Hive 2.1.1 and do the following op-
eration:

1 ta r −xzvf hive −2 . 1 . 1 . ta r . gz
2 cd hive
3 export HIVE_HOME={{pwd}}
4 export PATH=$HIVE_HOME/bin :$PATH
5 cd conf
6 vim hive−s i t e . xml
7 <con f i gu ra t i on>
8 <property>
9 <name>javax . jdo . opt ion . ConnectionURL</name>

10 <value>jdbc : mysql : // hadoop−master :3306/ hive ?
11 c reateDatabase I fNotEx i s t=true</value>
12 <des c r i p t i on>JDBC connect s t r i n g f o r a JDBC
13 metastore</de s c r i p t i on >
14 </property>
15 <property>
16 <name>javax . jdo . opt ion . ConnectionDriverName</name>
17 <value>com . mysql . jdbc . Driver</value>
18 <des c r i p t i on>Driver c l a s s name f o r a JDBC
19 metastore</de s c r i p t i on >
20 </property>
21

22 <property>
23 <name>javax . jdo . opt ion . ConnectionUserName</name>
24 <value>hive<value>
25 <des c r i p t i on>username to use aga in s t metastore
26 database</de s c r i p t i on>
27 </property>
28 <property>
29 <name>javax . jdo . opt ion . ConnectionPassword</name>

6 Shiyuan Zhan

30 <value>hive</value>
31 <des c r i p t i on>password to use aga in s t metastore
32 database</de s c r i p t i on>
33 </property>
34 </con f i gu ra t i on>

Then we can use HIVE

4 Result

Based on installed HIVE, I have finished some comparision between old and new
queres. I have made some conclusions according to the speed and throughput of
queries.

4.1 Evaluation of HIVE

First, I run our queries on HIVE and mysql and I made some comparisions
between different queries based on the difficulties of query on HIVE. We can see
the data in P. I chose one query which is diffficult and the other one which is
easier.

The first query is in the following. The purpose of the query is to find papers
which quote the author and how many times the author is quoted.

1 s e l e c t PaperReferences . PaperID , count (∗)
2 from PaperReferences inner j o i n
3 (s e l e c t ∗ from Pape rAutho rA f f i l i a t i on s
4 where AuthorID=’0C7733DB ’) as TB
5 on PaperReferences . PaperReferenceID = TB. PaperID
6 group by PaperReferences . PaperID

The second query is in the follings.The purpose of this query is find how
many times the author is quoted by SCI.

1 SELECT count (∗) ,SUM(SCICitat ion) as sum from
2 PaperSciReferencesCount CROSS JOIN
3 (s e l e c t PaperID
4 from Pape rAutho rA f f i l i a t i on s
5 where AuthorID = ’0000194E’) AS TB1 on
6 PaperSciReferencesCount . PaperReferenceID = TB1. PaperID

We can see that Hive functions better on the first query from the figure for the
reason that HDFS is designed for big data which is complicated for an easy
query needed to be transformed to map-reduce from Mysql. So. if we use HIVE
on Acemap, there may not be a sharp promotion on speed but we can use HIVE
to do some research about academic data.

Hive Queries Optimization Based on Acemap 7

Fig. 3. query1

Fig. 4. query2

4.2 Discussion about Cache

Cache means a collection of data duplicating original values stored elsewhere on
a computer, usually for easier access. In database, it means if you do a query
twice, yuo will find the second time be faster. I still use the first query to discuss
about Cache.

Fig. 5. query2

We can conclude from the figure that Cache in mysql has done a better work
than HIVE.

5 Conclusion

Hive is an great database for its speed to query. Also Hive is not adapt well with
our Acemap system because the query in our website is not so complicated to
use Hive. We can use Hive to do some data mining work.

