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Introduction

* Core percolation, as a fundamental \
structural transition resulted from
preserving codes nodes in the SN
network, is crucial in network SRR o
controllability and robustness. 3 i

* \We can consider core nodes as
stable nodes in a network.
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GLR Procedure.

* Prior works are mainly based on single, non-interacting network where core
nodes are obtained by a classic Greedy Leat Removal (GLR) procedure that
takes off leaf nodes along with their neighbors iteratively.
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* o-removable: can become isolated without directly removing themselves; 3-removable: which can become a
neighbor of a leaf; y-removable: which can be removable but neither a-removable nor -removable.
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Generate Networks

e Static Scale-free Model (SSF)

Start from N disconnected vertices, each one of them indexed by an integer
number 1,1 =1,..N. To each vertex, a normalized probability pi I1s assigned as,
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,for large N and a € [0,1].

Two different vertices | and | are randomly selected from the set of N vertices,
with probability pi and pj, respectively to generate edges. Repeat this process
by E=m=*N times.



Degree Distribution of SSF Model

e For a static scale-free network model,
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For large Kk, P(k) = ~ kMY = kv

Where k Is the degree of one node and P(k) denotes the probability of one
node to have degree k.



Alternating GLR Procedure

* Consider Two networks A and B. Assume that each node in A
depends on a node In B with a probability g(0<g=1) and vice
versa. We use Alternating GLR Procedure to get the core of the

Interdependent networks.
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Fully-Interdependent Networks

* Firstly consider the condition of g=1, which means fully
Interdependency.

Network A: Gap = Gag —— Gaz = = Ga(an-1)——— P
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GLR procedure in two interdependent networks



Partially-Interdependent Networks

* A more general condition: Nodes between networks A( with M
nodes) and B( with N nodes) are partially dependent with
probability g, and g respectively

where 0<g,,0g<1l,and M*q =N=*q g

Revised G function:

Pin = G(Pitaeny 1) = Y Pigaey®) (%) (1= 0,1 = w))(as(1 — u))¥'~*
k'=k



One-to-Multiple Interdependent Networks

* Assume N'=N=*qgg nodes In network B have a partner in network A,
and assume they are partners of node I In network A with
probability pi( 1=1,2,,M"). M Is the number of nodes Iin A that may
have partners, and denote g,=M'/M. Denote X as the number of
nodes being partners of node A. Then we have

¢ P(Xl — XllXZ = X9, ...,XM/ — XM’) — ,'H (Xl =

network A: @ @ @ @ M=4M'=2,q A=0.5

p(i)=0.5,i=1.4

network B: é é é @ é} N=5N'=4,q B=0.8




Remaining Nodes

* Further assume there are t, nodes being partners of A(i=1,2,-,N’, and
denote t = ),;t; ) in the removmg nodes in network B. We will remove
A and all its partners It t; does not equal to O, which makes the

remaining nodes to be R = M X L, =o]-
* We can get the expectation of remaining nodes
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Revised AGLR Procedure
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Experimental Study

Single-Layer Network

Real-World

Networks Partial-Interdependent Networks

—Synthetic Networks

One-to-multiple Interdependent Networks

Experimental Setup
|



Single-Layer Network
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Synthetic Networks
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Real-world Networks



Partial-Interdependent Networks
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The results of the first layer in double-layer networks where figure (b) are sections of figure (a)



Partial-Interdependent Networks

a, =0.5,crz=0.5,p=0.9
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The results of the first layer in double-layer networks where figure (b) are sections of figure (a)



One-to-multiple Interdependent Networks
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The results of theoretical derivation and experiments on synthetic networks, where figure (b) is the sections of (a).



One-to-multiple Interdependent Networks
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The results of in the case of one-to-multiple interdependent networks
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