Generalized Model for Core Percolation in Interdependent Network

Mobile Internet Course Nan Wang

Introduction

- Core percolation, as a fundamental structural transition resulted from preserving codes nodes in the network, is crucial in network controllability and robustness.
- We can consider core nodes as stable nodes in a network.

GLR Procedure.

 Prior works are mainly based on single, non-interacting network where core nodes are obtained by a classic Greedy Leaf Removal (GLR) procedure that takes off leaf nodes along with their neighbors iteratively.

• α -removable: can become isolated without directly removing themselves; β -removable: which can become a neighbor of a leaf; γ -removable: which can be removable but neither α -removable nor β -removable.

Generate Networks

• Static Scale-free Model (SSF)

Start from N disconnected vertices, each one of them indexed by an integer number i, i =1,...N. To each vertex, a normalized probability pi is assigned as,

$$p_{i} = \frac{i^{-\alpha}}{\sum_{j=1}^{N} j^{-\alpha}} \approx i^{-\alpha} \frac{1-\alpha}{N^{1-\alpha}}, \text{ for large N and } \alpha \in [0,1].$$

Two different vertices i and j are randomly selected from the set of N vertices, with probability pi and pj, respectively to generate edges. Repeat this process by E=m*N times.

Degree Distribution of SSF Model

• For a static scale-free network model,

$$P(k) = \frac{[2m(1-\alpha)]^{\frac{1}{\alpha}}}{\alpha} \frac{\Gamma\left(k - \frac{1}{\alpha'}, 2m(1-\alpha)\right)}{\Gamma(k+1)}.$$

For large k,
$$P(k) \cong \frac{[2m(1-\alpha)]^{\frac{1}{\alpha}}}{\alpha} \frac{\Gamma(k - \frac{1}{\alpha})}{\Gamma(k+1)} \sim k^{-(1+\frac{1}{\alpha})} = k^{-\gamma}$$

Where k is the degree of one node and P(k) denotes the probability of one node to have degree k.

Alternating GLR Procedure

• Consider Two networks A and B. Assume that each node in A depends on a node in B with a probability $q(0 < q \le 1)$ and vice versa. We use Alternating GLR Procedure to get the core of the interdependent networks.

Fully-Interdependent Networks

• Firstly consider the condition of q=1, which means fully interdependency.

GLR procedure in two interdependent networks

Partially-Interdependent Networks

• A more general condition: Nodes between networks A(with M nodes) and B(with N nodes) are partially dependent with probability q_A and q_B respectively

where 0<q_A,q_B \leqslant 1, and M * q_A = N * q_B $_{\text{B}} \stackrel{\text{\tiny def}}{=} R$

Revised G function:

$$P_{in} = G(P_{i(n-1)}, u) = \sum_{k'=k}^{\infty} P_{i(n-1)}(k') \binom{k'}{k} (1 - q_i(1 - u))^k (q_i(1 - u))^{k'-k}$$

One-to-Multiple Interdependent Networks

• Assume N'=N*q_B nodes in network B have a partner in network A, and assume they are partners of node i in network A with probability p_i (i=1,2,...,M'). M is the number of nodes in A that may have partners, and denote q_A =M'/M. Denote X_i as the number of nodes being partners of node A_i. Then we have

•
$$P(X_1 = x_1, X_2 = x_2, ..., X_{M'} = x_{M'}) = M'! \prod_{i=1}^{M'} \frac{p_i^{x_i}}{x_i!} \quad (x_i \ge 1)$$

Remaining Nodes

- Further assume there are t_i nodes being partners of A_i (i=1,2,…,N', and denote $t = \sum_i t_i$) in the removing nodes in network B. We will remove A_i and all its partners if t_i does not equal to 0, which makes the remaining nodes to be $R = \sum_{i=1}^{M'} x_i \mathbf{1}_{[t_i=0]}$.
- We can get the expectation of remaining nodes
- E(R) = $\sum_{x_1+x_2+\dots+x_{M'}=N'} P(x_1, x_2, \dots, x_{M'}) \cdot \left[\sum_{t_1+t_2+\dots+t_{M'}=t} \frac{C_{x_1}^{t_1} C_{x_2}^{t_2} \dots C_{x_{M'}}^{t_{M'}}}{C_{N'}^{t_i}} \cdot R\right] =$ $\sum_{x_1+x_2+\dots+x_{M'}=N'} M'! \prod_{i=1}^{M'} \frac{p_i^{x_i}}{x_i!} \cdot \left[\sum_{t_1+t_2+\dots+t_{M'}=t} \frac{C_{x_1}^{t_1} C_{x_2}^{t_2} \dots C_{x_{M'}}^{t_{M'}}}{C_{N'}^{t_i}} \cdot \sum_{i=1}^{M'} x_i 1_{[t_i=0]}\right]$

Revised AGLR Procedure

Experimental Study

Single-Layer Network

Synthetic Networks

Real-world Networks

Partial-Interdependent Networks

The results of the first layer in double-layer networks where figure (b) are sections of figure (a)

Partial-Interdependent Networks

The results of the first layer in double-layer networks where figure (b) are sections of figure (a)

One-to-multiple Interdependent Networks

The results of theoretical derivation and experiments on synthetic networks, where figure (b) is the sections of (a).

One-to-multiple Interdependent Networks

The results of in the case of one-to-multiple interdependent networks

