
                    Reconstruct radio map for indoor localization 
                   Studentid:5140309185            name:李豪 
   The main point of Wi-Fi fingerprinting localization is to collect large amounts of received 
signal strength(RSS) fingerprints. In my recent work, I am doing the modulation of a new 
theory where fundamental radio propagation properties are captured based on Huygens’ 
principle to construct the radio map. I first model radio propagation from one location to the 
neighboring locations using a single-step matrix, and then derive the end-to-end 
propagation matrix through parallel radio propagation channels modeling. After that I derive 
the end-to-end propagation matrix using the theory that we investigate, and then compare 
the derived matrix of these two methods. 
   Consider a room that is divided by grid as shown figure.1. There are two Wi-Fi access 
points (Aps) located in the two grey squares. We use ܪ௜,௝ to denote the wireless propagation 
factor between ݈݈ܿ݁௜ and ݈ܿ݁ ௝݈, where the physical meaning of ܪ௜,௝ is how the radio signal 
can be changed after it arrives to ݈ܿ݁ ௝݈ from ݈݈ܿ݁௜ in power level. Consider an extremely 
small period of time, the signal will only arrive at the neighboring cell of the signal source, as 
shown in figure.1. We only consider the case where the signal can travel to the four 
neighboring cells for the simplicity of presentation. In this way, we could use a single-step 
propagation matrix H to describe the radio propagation, where elements in the matrix is 
 .௜,௝ܪ
   

                          
Figure 1: single-step radio propagation model 

  According to Huygens’ principle, every point on a wave-front can be a source of secondary 
wavelets which propagate in the forward direction, and new wave-front is the tangential 
surface to all of these secondary wavelets. We can use ܪ௜,௞ and ܪ௞,௝ to denote the channel 
propagation factor between ݈݈ܿ݁௜ and ݈ܿ݁ ௝݈.  
  We now consider the radio propagation process when the signal hits the walls. We first 
examine the situation in the corner, as shown in the upper left part of figure.2. The wall will 
absorb part of the signal and rebound the rest. If we use x to denote the power level of the 
signal at the center of the square, y the aggregate power level after the walls’ effects, and α 
the transmissivity of the wall ranging from 0 to 1, then the signal strength can be received at 
each of the neighboring cells is: 
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where the rebounded signal can also propagation to the neighboring cells according to 
Huygens’ principle. Similar, if the source of the signal is beside the border of the room as 
shown in the middle right part of figure.2. The corresponding signal strength is: 
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                        Figure 2: propagation analysis with walls 
   Recall that H is the single-step propagation matrix. We here specify two assumption: first, 
in every single cell, signal will not attenuate; second, in extremely short period of time, signal 
can only propagate to the neighboring cell, thus only certain item in H is non-zero. Here are 
some characteristics of the single-step matrix H ௜,௝ܪ (1 : ௝,௜ܪ =  , because propagation is 
symmetric; 2) for each roll in matrix H, there are at most four non-zero elements. That means 
the propagation of nonzero elements in H is approximately 4nଶ/nସ. When n is large enough, 
the propagation of nonzero elements is small, so we can consider H as a sparsity matrix. 
   We use T to denote the multi-hop radio propagation matrix, where each element: 
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Where  ܪ௜௞ܪ௞௝  describe the propagation process from ݈݈ܿ݁௜  to ݈ܿ݁ ௝݈  obeying Huygens’ 
principle. Each elements of equation (1) represents an independent channel form ݈݈ܿ݁௜ to 
݈ܿ݁ ௝݈ . According to the theory of parallel channels, we can get the final end-to-end 
propagation results: 
       Tx = Hx + Hଶx + Hଷx +…,                                           (2) 

Where Tx is the collection of RSS fingerprints that have been sampled, x is the original 
signal strength, which can be obtained in the localization system. The physical meaning of 
the equation is the aggregate influence of the environment on radio propagation. 

Removing x from both size of equation (2), we can get: 
    T = H + Hଶ + Hଷ +…,                                               (3) 

This is the fundamental relationship between T and H, which can be used in the matrix 
reconstruction later. By calculating HT െ T,we finally get the relationship between T and H: 
        T = ሺܧ െ  (4)                                                     .ܪሻିଵܪ
   The difference between T and H is that ௜ܶ௝  are all nonzero elements if there is no 
obstacle in the space, so the uncertainty of T is magnitude of nସ.So the biggest challenge 
of this theory is how to get the H matrix through collected fingerprints at a limited number 



of locations. 
   Recall that the order of uncertainty of T is Oሺnସሻ and that of H is Oሺnଶሻ. This means 
that we need to sample the number of fingerprints in the order of Oሺnସሻ to obtain the entire 
information of T, however if we only sample a subset of locations for fingerprints in practice 
it is still possible to derive H  with those fingerprints available. We now examine the 
relationship between matrices T and H. 
   We can get H ൌ T െ HT  by equation (4). Due to the characteristic of single-step 
propagation matrix H, for each cell c୧୨(not at the corner or on the borders), only values in 
	,௜ିଵ,௝ܪ 	,௜ାଵ,௝ܪ 	,௜ି௡,௝ܪ  :௜ା௡,௝ are valid. Thusܪ
௜,௜ିଵ = ௜ܶ,௜ିଵ - ෌ܪ         ௜,௞ܪ ௞ܶ,௜ିଵ୩

 
              = ௜ܶ,௜ିଵ - ܪ௜,௜ି௡ ௜ܶି௡,௜ିଵ -  ܪ௜,௜ିଵ ௜ܶିଵ,௜ିଵ - ܪ௜,௜ାଵ ௜ܶାଵ,௜ିଵ -ܪ௜,௜ା௡ ௜ܶା௡,௜ିଵ. (5) 
Similarly, we can get expressions of ܪ௜,௜ି௡, ܪ௜,௜ାଵ, ܪ௜,௜ା௡. Based on these equations above, 
we can get: 
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   Where the first matrix can be denoted by ௖ܶ and the term on the right side is denoted 
by ௥ܶ . Note that the algorithm works only if the coefficient matrix ௖ܶ Is full rank. Due to the 
stochastic values we collect in RSS fingerprints in practical environment, there is little 
possibility that the matrix is not full rank; therefore, this condition holds. 
   According to the connections between matrix T and H, if we have known some elements 
in the final propagation matrix T, we can first recover the single-step propagation matrix H, 
and then recover all elements in the final matrix T using matrix completion. In equation (6), 
we find that for each ݈݈ܿ݁௜ , we need ௖ܶ , 	 ௥ܶ  to calculate the propagation factor to its 
neighboring cells, i.e., ܪ௜,௜ି௡, ܪ௜,௜ିଵ, ܪ௜,௜ାଵ, ܪ௜,௜ା௡. To recover the entire matrix H, we should 
know all the ௖ܶ ,	 ௥ܶ when ݈݈ܿ݁௜ is from ݈݈ܿ݁ଵ to ݈݈ܿ݁௡మ . According to the feature of subscript 
in ௖ܶ , 	 ௥ܶ , all we need is elements in matrix T  that satisfy one of the equations as 
following: 	 y ൌ x, y ൌ x ൅ n, y ൌ x െ n, y ൌ x ൅ 1, y ൌ x ൅ 1, y ൌ x െ 1, y ൌ x ൅ 2, y ൌ x െ

2, y ൌ x െ 2n, y ൌ x ൅ 2n, y ൌ x ൅ 1 ൅ n, y ൌ x ൅ 1 െ n, y ൌ x െ 1 ൅ n, y ൌ x െ 1 െ n . Now we 
have proved that if we have get these elements in T, we can first recover the matrix H and 
derive the complete T. 


