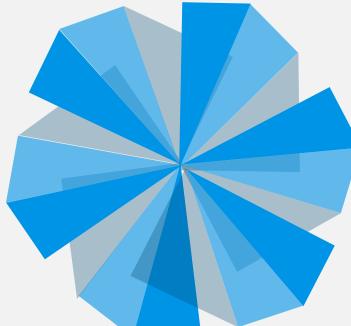
Small-world phenomena in paper networks

Overview


Introduction

Work

Future work

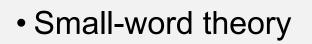
Overview

What is the study?

Small-world

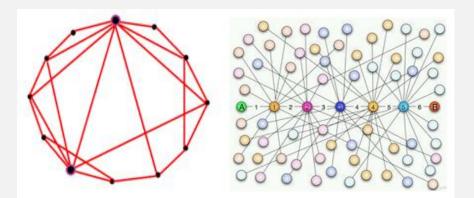
Paper network

Whether small-word or a similar phenomenon occurs in paper reference networks.


Main point:

Analyze the characteristics of paper network (especially the path in the paper references net)

Introduction


What is small-word

Small-world network is a type of mathematical graph in which most nodes can be reached from every other node by a small number of hops or steps.

Small-world networks and management science research: a review (2007)

history & theory

Two Important Properties of Small World Networks:

Low average hop count (L)
High clustering coefficient (CC)

Dataset

Microsoft Academic Graph(MAG) text networks

http://acemap.sjtu.edu.cn/acenap/index.php/datasets.html

	Microsoft Academic Graph(MAG) text networks					
Tools	Name	Nodes	Edges	Communities	VocabularySize	
	01_MAG_Internet_privacy	749	749	346	85	
	20_MAG_Database	323411	323411	15696	9000	
	21_MAG_World_Wide_Web	348927	348927	14580	9268	749
	22_MAG_Computer_network	380102	380102	146 <mark>1</mark> 9	8498	749 6
Result	23_MAG_Parallel_computing	395579	395579	15648	9680	
	24_MAG_Embedded_system	399925	399925	13617	8908	
	25_MAG_Algorithm	698494	698 <mark>4</mark> 94	19721	13900	
	26_MAG_Operating_system	777301	777301	20227	<mark>1</mark> 5469	
	27_MAG_Programming_language	991394	991394	22995	22453	
Analysis	28_MAG_Telecommunications	1062077	1062077	20347	18214	
	29_MAG_Artificial_intelligence	1089521	1089521	21984	20260	
	30_MAG_Computer_vision	1167609	1167609	19635	19142	
	31_MAG_Machine_learning	1505772	1505772	21332	26261	
	32_MAG_new_Bioinformatics	1840655	1840655	17805	45188	

Python3

Python package:

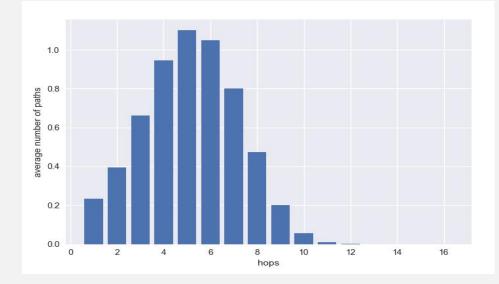
NetworkX 🛀 matpl tlib

Seaborn: statistical data visualization

Directed graph

Internet privacy paper network (749 nodes and 749 directed edges)

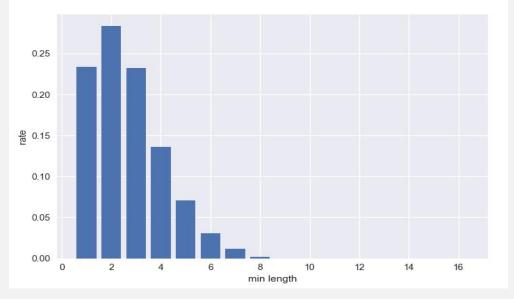
result from my program:


- 1. existing roads is 6108
- 2. average length of the existing road is 5.925671
- 3. expected length between two nodes is 3.330856
- 4. average minimum hop(L) is 2.671415

Directed graph

Internet privacy paper network (749 nodes and 749 directed edges)

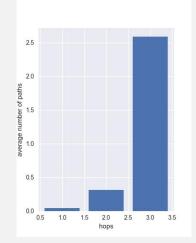
In the average condition, the hops between arbitrarily two nodes that have paths have a distribution: *visualization the distribution*



Directed graph

Internet privacy paper network (749 nodes and 749 directed edges)

visualization the distribution of min length


75.0%in3 hops98.7%in6 hops

Undirected graph

Internet privacy paper network (749 nodes and 749 directed edges)

In the average condition, the hops between arbitrarily two nodes that have paths have a distribution:(within 3 hops) *visualization the distribution*

DFS algorithms

the algorithms used now to find all paths between two nodes is a modified depth-first search(DFS).

Algorithm complexityFind a single pathO(V + E)

but the number of single paths in a graph can be very large, e.g. O(n!) in the complete graph of order n.

Total time the program used may up to O(V!* V2)

Future work

- \cdot use more powerful computer and improve our algorithms
- \cdot calculate clustering coefficient (CC)
- \cdot unearth more interesting information from the network

Thanks