Author-Profiling

Zhiming Zhou 5140309059

May 16, 2017

Abstract

During the semester, we found that author name ambi-
guity is a frequently encountered problem in Acemapdif-
ferent authors may publish under the same name, while
the same author could publish under various names due
to abbreviations, nicknames, etc. This report is about
the work we have done and a new direction of its devel-
opment we have found that should be more effective and
practical to solve the problem.

1 INTRODUCTION

Acemap is a novel academic information system, and
the website has already online with lots of useful,
interesting, beautiful, powerful, intuitive and unique
function. But while searching for academic papers by
a specific author name, you may found a large variety
of papers ranging from different fields under the author
name you search, and it is really tough to distinguish the
correct paper you are looking for from others. When you
glance through the list and still could not find a paper
you are particularly interested in, it suddenly occurs to
you that the missing paper was in fact published un-
der another name which uses abbreviations of the author.

Author name ambiguity is indeed an often encoun-
tered problem in digital publication libraries. Author
profiling is important for an apparent reason: it helps
refine search results for end users and thus improves user
experience and productivity. Another reason is that it
empowers more accurate bibliometric analysis such as
mining academic social networks.

The following part of this report is organized as
follows. In section 2, I will show what we have had
tried to do. In section 3 I will illustrate a more effective
algorithm we have found which has been proved useful
on author profiling. I will show the detail of the major
components in the system in section 4, followed by
conclusion in section 5.

2 PREVIOUS WORK

At first, we have no idea what to do, because we can not
find anything as a reference. So we just do some simple
try and we hope we can make some adjustment by ob-
serving the effect of the result. The easiest method is to
cluster the author with co-authors. For an example, if we
want to cluster author A, we could first collect all papers
that published under the name A, then, we extract their
co-authors, and compare them. If the first author has co-
authors B and C, and the second author has co-author C
and D, we can initially identify that the two author is the
same person. After we have complete the code which can
be used in our database, I adjust it to another smaller
database that have already done the author profiling job
to evaluate this method. Unfortunately, the result was
not very satisfactory. But there is always a way out for
we have found an algorithm which fits our problem dur-
ing the test of our previous code, and the algorithm had
ranked in the second place in KDD Cup Data Mining
Contest 2013.

3 SYSTEM OVERVIEW

We mainly have two steps to first maximize the recall and
then maximize the precision. the two steps are as follows:

Maximize the recall: enlarge candidate pool of du-
plicates. For each indexing author ID, we should try
to pull out all the author IDs whose author names are
possible variations of the indexing author name. Ideally
this pool covers all the duplicates and is as compact as
possible. To come up with the pool we should take into
account a number of cases where names can mutate or
be disturbed. For instance, Mike Lewisg can be safely
assumed to be a noisy variant of Mike Lewis by an extra
g, while it is not the case for Chinese names Wei Lin and
Wei Ling, as both Lin and Ling are valid last names.

Maximize the precision: trim the candidate pool
based on authors publication features (i.e., meta-paths)
we have calculated. Examples of publication features
include co-author network, publication venues, years,
titles words and keywords. These features turn out to



be discriminative for identifying real duplicates from the
candidates pool.

And we should also have a pre-processing procedure to
handle noisy and missing values and a post-processing
step to remove unconfident duplicates. In the following
section, I will illustrate the algorithms in details.

4 ALGORITHM

4.1 Pre-processing

Before going deeper to the recall and precision steps, we
need to first clean the data to recover part of author
names. Here I list two main types of noises:

Noisy First or Last Names: Some examples of noisy
names belonging to this type are Eytan H. Modiano
and Eytan Modianoy, Nosrat O. Mahmoodo and Nosrat
O. Mahmoodiand, UniversityofBonn Andreu Mas Colell
and Andreu Mas Colell. To recover the correct first
and last names from the noisy observations, we can
first build statistics of single name units. Later for rare
last and first names, we should compare them with the
possible sub-strings by discarding the characters at the
beginning or end of the name unit. If theses substrings
appear frequent in the data set, we believe these name
strings should get recovered.

Mistakenly Separated or Merged Name Units: Name
units are defined as elements split by whitespace or other
punctuation marks like dash as delimiters. Sometimes,
different name units are mistakenly separated or merged
in the data set. Examples include Sazaly Abu Bakar
and Sazaly AbuBakar, Vahid Tabataba Vakili and Vahid
Tabatabavakili. To handle this kind of noise, similar
to the previous type, we can still build statistics of
name units. But this time co-occurrences of name units
appearing within the same author name are recorded.
By referring to the times of appearance of concatenated
name units, we are able to separate or merge name units
if they are originally mistakenly merged or separated.

4.2 Improving recall

We propose to enhance the recall via two main categories
of considerations:

4.2.1 String-based Consideration:

Levenshtein Edit Distance: the Levenshtein distance is
a string metric for measuring the difference between two
sequences. Informally, the Levenshtein distance between

two words is the minimum number of single-character
edits (insertions, deletions or substitutions) required to
change one word into the other.

Soundex Distance: Soundex algorithm is a phonet-
ic algorithm that indexes words by their pronunciation
in English.

Overlapping Name Units: Two strings are viewed
as similar if one name string shares most of its name
units with the other.

4.2.2 Name-Specific Consideration

Name Suffixes and Prefixes: Name prefixes like Mr and
Miss, generational titles like Jr, I, II are ignored during
name comparison.

Nicknames: We use the search of the team for common
nicknames from the world wide web to form our nick-
name knowledge base because some researchers prefer
to use nicknames and original names for different papers.

Name Initials: Due to the diverse format of re-
search papers, it is not surprising to see name initials
used in title, in the content, and/or the citation of
research papers. One thing that one needs to be careful
with is that some initials refer to the same name unit
even if they are not the same(such as nicknames).

Asian Names and Western Names: Asians have d-
ifferent name structure from westerns. Thus, we cannot
use the same approach for names from different regions.
In order to differentiate Asian names and Western
names, we use the teams definition of different rules to
extract names. Additionally, Asian and western names
usually have totally different settings for the above
mentioned ideas.(edit distance, soundex distance)

4.3 Improving The Precision

It is questionable for considering two author IDs to be
the duplicates even though they share the same or simi-
lar names. Now I will introduce a ranking-based method
in cascaded stages to solve these two problems simulta-
neously.

4.3.1 Meta-Path-based Similarity

In the network schema extracted from the data set,
two authors can be connected via different paths. For
example, two authors can be connected via author-
paper-author path, author-paper-venue-paper-author
path, and so on. Intuitively, the semantics underneath
different paths imply different similarities. Formally,



these paths are called meta-paths.

For a single relation, the measure matrix is an ad-
jacency matrix M of the sub-network. Given a
composite relation in a meta-path, the measure matrix
can be calculated by the matrix multiplication combined
with normalization of the partial relations.

The team selected meta-paths and corresponding
weights simply based on our prior knowledge. The
selected meta-paths are APA, AOA, APAPA, APVPA,
APKPA, APTPA and APYPA.(”A” is author, "P” is
paper, 7O” is Org., V is venue, "K” is keyword, "T”
is title, and ”Y” is year) The weights for them are
decreasing progressively.

D @
) O ©

(]
'

Figure 1: Illustration for computing meta-path- based
similarity

Assume we are given a tiny sub-network as shown in
Figure 1 composing three authors, five papers and three
venues. It is easy to check the adjacency matrix M4 p
and Mpy depicting the relations for Author-Paper and
Paper-Venue are:

=
)
<
5

My, p P1

coco§

s
oO=rROoRZg
o

Then, the measure matrix between Author and Venue
is:

Mayv = Normalize(Ma p * Mpy)

From now on, the similarity scores for any pairs of au-
thors can be simply referred to by looking up the corre-
sponding matrix values.

4.3.2 Meta-Path-based Similarity

We do a scan from the top ranked ID pair to the low-
er ranked ones to help infer the author entity. And we
will skip the conflict IDs, find one that has high similar-
ity but also passes the name matching comparison, we
believe these two IDs having high probability to be the
real duplicate. After that, if A is the duplicate of B and

B is the duplicate of C, we will consider that a is the
duplicate of C. Another important strategy is to expand
the author names corresponding to the IDs once we are
confident about two IDs to be the duplicate. This idea is
useful because it can help avoid the mistakenly detected
conflicts.

4.4 Post-processing

Unconfident duplicate author IDs should be removed
even though their names are compatible and their meta-
path- based similarity scores are acceptable. This step
is crucial in that the later iterative framework requires
highly confident output to gradually refine the results.
It is also tricky since through empirical study, and it is
difficult to define unconfident.

4.5 TIterative Framework

Assume we are able to find highly confident duplicate
author IDs using the aggressive strategy introduced in
the last subsection, what can we do with this to further
improve the performance? The answer is clear: An iter-
ative framework which takes the detected duplicates of
the last iteration as part of the input for the following
resons:First, we are able to generate much better meta-
path-based similarity scores by adding up the elements
of the duplicate author IDs in the adjacency matrices de-
scribing different relations. This definitely can help the
p-step to increase the precision.Second, recall the name
expansion module introduced at the end of the p-step.
One shortcoming of that module is the irreversibility of
the conflict detection. That is, once we detect conflicts
within a group of author IDs, the merge must be rolled
back even though later the conflicted name strings are
expanded to be compatible. However, if we adopt this it-
erative framework and expand author names at the very
beginning, it is less possible to miss this performance
gain.

5 Conclusion

We have tried to disambiguation the author name, and
we have found a better algorithm which is undoubtedly
practical in KDD Cup Data Mining Contest 2013. But
there is still lots of work need to be done. We have
a problem that we originally intended to deal with all
the data in our database, but after trying to run the
program, we found out that the RAM of the computer
is not enough to deal with all of the data at once. So, in
the future, we want to change the code to deal with one
author name at one time, and we need to change some of
the parameters according to the result to obtain the best
result. I am looking forward to the day we complete the



work, and I am firmly believed that our work will turn
out to be an improvement of the Acemap.



