
Database optimization on Spark

1. Introduction

1.1 Background

Since nowadays the amount of the data on the internet grows much larger than

before, it is necessary to use some corresponding platform to compute and process

such big data.

Spark is such a platform for large-scale data processing. It’s much faster than

the former used engines and is a very general tool which can be used for database,

machine learning, image processing.

Similarly, our Acemap also need to handle big data, therefore our Database

group began to construct a Spark ecosystem, aiming to firstly using Spark to

accelerate the querying speed of database and then further using it for machine

learning.

1.2 Spark and Hadoop

Spark learned from the Mapreduce of Hadoop(another platform which is

widely used before), borrowing the advantages of its distributed parallel

computing. However, Spark performs much better than Hadoop, because it puts

the intermediate data in the memory instead of the disks to largely increase the

efficiency of data processing. It also gives much more operations for data set

while Hadoop only has ‘map’ and ‘reduce’, so that it can be used more generally

and easily.

1.3 Spark and MySQL

MySQL doesn’t perform well in many tasks because it uses only one CPU

core for a single query. It means that though you have many fast CPU cores and a

big data set, you can’t fully use their computing ability. Spark on the contrary can

use all those cores. I will talk about how I fully use those cores later.

1.4 Goal

Our goal is to test the performance of Spark in accelerating querying speed

and do some optimizations. A further goal is to try machine learning using Spark.

2. Environment

2.1 Hadoop HDFS

Though we don’t use Hadoop for data processing, we use the HDFS of

Hadoop. It’s a distributed file system which is safe and easy to use. We firstly

migrate some table to the HDFS from the database, and then using Spark to query

the data from HDFS.

2.2 Spark

We use two components of Spark in this project:

1. SparkSQL, a SQL component of Spark, which uses the techniques such as

In-Memory Columnar Storage, bytecode generation to enhance the querying

performance.

2. MLLib, a machine learning library on Spark.

Spark is a distributed system so we should install and configure Spark on each

server. The installation and configuration steps are :

1. Install Scala.

2. Compile the source code of Spark or simply use the pre-build Spark.

3. Generate SSH key pairs and send public key to each other server. So that each

server can communicate between each other.

4. Install Spark on the master server, and two slave servers.

5. Do some configurations for example the scala path and hadoop address on the

master server, and copy the configuration files to other servers by SSH.

6. Start Spark and use ‘jps’ to monitor the processes.

With above steps we can construct and run a basic Spark system and advanced

configurations will be talked later.

3. Pre-work of data migration

3.1 Brief introduction of sqoop

Sqoop is a tool designed to transfer data between Hadoop and relational

databases or mainframes. You can use Sqoop to import data from a relational

database management system (RDBMS) such as MySQL or Oracle or a

mainframe into the Hadoop Distributed File System (HDFS), transform the data in

Hadoop MapReduce, and then export the data back into an RDBMS.

 Since we need firstly migrate some tables of the database from MySQL to

Hadoop, sqoop is a good tool to help us.

3.2 Parquet and txt

 Sqoop supports migrating data from RDBMS to HDFS as different file

formats. While we use different types of files as the source data for Spark, the

performance varies. So in order to choose the best file format, I checked some

information and had some experiments. I finally chose parquet file for following

reasons:

1. SparkSQL is much quicker using parquet than txt.

As the user’s guide of spark shows, using parquet can increase tenfold the

querying performance of using txt. I tried a few querying to test and verify this

result.

2. Less disk space.

Parquet with compression capabilities can reduce data storage by an average

of 75%.

4. Implementation

This part discusses the implementation of SparkSQL in two different methods.

The optimization is also included.

4.1 Using operations for RDD

As I mentioned before, Spark supports a lot of operations on its data set. For

example, ‘map’ and ‘filter’ can be used to build a new data set from an old one,

and ‘sample’, ‘groupbykey’ and some other operations can be used to process a

data set.

There are some simple examples:

One query in Acemap for finding the paper that references an author and the

number of times the paper references the author can be implemented as:

0

5

10

15

20

sql1 sql2 sql3

parquet

txt

4.2 Using translator

SparkSQL has a translator for SQL sentences, which can help translate SQL

into Spark language. With this feature, users will be free from learning those

operations for Spark and finding the best operations for a query. So anyone who is

familiar with SQL can easily use the SparkSQL, though it will take a little time for

translating.

 The implementation is quite simple:

4.3 Run spark project

1. spark-shell: A shell interface for users to test their codes. In this mode, project

is running stand-alone.

2. spark-submit: It helps us submit the project to cluster, which means the project

is running on all the servers.

4.4 Optimization

We talked about some configurations for building a basic Spark system, but

still there are some advanced configurations to reach a better performance. I also

did some experiments to decide the how to configure.

The resources of our servers(4 cores and 10.7GB memory for the master

server, 32 cores and 124.8GB memory for two slave servers):

When we use ‘spark-submit’ to submit a Spark project, a driver process is

started, it will start some executor processes. In a Spark job, driver process

responsible for resources allocation and executor processes perform the tasks. The

number of executors and how many cores a single executor has, are determined by

our configuration.

1. number of executors & executor memory

The number of executors is a very important parameter. If the number is

too small, we can’t fully use our resources, and on the other hand, some

executors may not have enough resources if the number is too big. Executor

memory influences the performance of a single executor. When we allocating

the memory, we should make sure the total executor memory doesn’t go

beyond the total memory of the server.

I finally choose to set 20 executors and 10GB memory for each executor.

2. executor cores

Executor cores determine the ability for an executor to process tasks

parallel. The more cores an executor has, the less time it will take to finish its

own task.

3. parallelism

Parallelism determines the tasks number. It has direct influence on the

performance of your Spark project, because if the number is two small, many

executor will not get a task, so no matter how will you configure the number

of executors and the executor cores, your efforts are useless.

I finally set the number as 200, so that those executors and CPU cores are

fully used.

5 Results & Analysis

5.1 Results

Because MySQL performs well itself on simple querying, and Spark is

designed to process big data sets, our optimization mainly focused on

complicated querying which either uses very large data sets or need to do difficult

computing.

I optimized these 5 querying:

1. sql1: find the papers that reference an author and the number of times the

papers reference the author

2. sql2: find 1000 most relevant study fields to a certain field, and show

their relationships.

3. sql3: find out 50 of the most cited authors in a field.

4. sql4: find out the numbers of a paper be sited in each study field.

5. sql5: Shows the number of papers of an author, and the total number of

citations.

 MySQL SparkSQL SparkSQL-optimized

Sql1 162 120 82.4

Sql2 81.5 25 5

Sql3 34 18 7.1

Sql4 61.8 44 35

Sql5 25 16 11

5.2 Analysis

 For those simple querying, MySQL itself performs well enough that users will

not feel those querying are slow. Spark performs equivalent or sometimes little slower

with those querying, because Spark may cost some time to apply resources and

allocate tasks. However, when we deal with large data sets, Spark enhances its

0

20

40

60

80

100

120

140

160

180

sql1 sql2 sql3 sql4 sql5

162

81.5

34

61.8

25

82.4

5 7.15

35

11

MySQL

SparkSQL

performance impressively. As the result show above, for those complicated querying

Spark is average 5 times quicker, thanks to those features, for example, putting

intermediate data in memory and fully using the cores of CPU to compute.

