
Flow Scheduling in Datacenter Network

Lanqing Liu

May 15,2017

Abstract: Nowadays, the amount of data on the network and the population of

wireless users increase rapidly. The application providers such as Facebook and

Amazon demand the better performance of the datacenter network. The flow

scheduling is the core problem of datacenter network. We come about two queuing

model in the ingress side of the switch and make the related evaluation. And in order

to describe the performance of the system, we introduce system welfare.

Keywords: Datacenter Network, flow scheduling, queue, system welfare.

1 Introduction

1.1 Background

In recent years, the development of the Internet is very rapid. The amount of data on

the network surge and the number of wireless network users also explosively grows.

As a result, the traditional data processing, storage technology are facing great

challenges. Fortunately, cloud computing is produced. Cloud computing is a

pay-per-use model that provides available, convenient, and on-demand network

access to configurable computing resource sharing pools (resources including

networks, servers, storage, applications, services). These resources can be quickly

provided, with very little management effort, or little interaction with the service

provider. Cloud computing can solve the problem of massive data processing.

With the emergence of cloud service providers (such as Amazon, Microsoft, Google

and other companies) and the popularity of datacenter, large enterprises increasingly

want to integrate into a datacenter hub and build a high-performance datacenter for

computing and storage. So what is a Datacenter network?

Datacenter Network: A datacenter is always composed of some servers and some

switches. The flows will be transmitted among the servers through the switches. The

fabrics of Datacenter network is various. But the most used fabric is the tree

structure showed in Figure 1. Each tier providing network transport to components

below it: top-of-rack switches(ToR) connect servers in a rack, aggregation switches

connect racks into clusters, core routers connect clusters.

Figure 1

In reality, cloud services still face some problems when processing or storing data,

such as the increasing traffic in the network, the complexity of the cloud service

access environment, the diversity of user needs, and the heterogeneity of the service

itself. They will lead to problems such as network congestion, reduced user

experience, reduced computing resources and decreased utilization of network

resources. Datacenter resource scheduling is the core of the whole cloud service, for

different users of different needs, the datacenter will respond to different, but also

as much as possible to improve the computing resources and network resources

utilization.

1.2 Our Work

By reading many papers about flow scheduling in datacenter network. We find that

there many scheduling and queuing method. Some system consider the problem in

terms of flows, others in terms task. Considering the flows of one task have the

same source, destination and demands, we make the queue in terms of task. We

determine the priority according to the length and the number of the flows of the

task. The flows in a task will have the same priority. In order to describe the

performance of our system, we make a system welfare function. And the resource of

the datacenter will be assigned to every switch according to the system welfare

function.

In short, Our work is to find a most efficient queuing method in the ingress side of

the switch and make the resource assignment according to the system welfare. So we

two-way priority sorting from the task level. And the observation is to get the most

welfare of the whole system including the customs’ profit and the provider’s profit.

2 Related Work

Our system is build under the inspiration of many previous work of DCN. In order to

help the readers better understand our system, the following are the description of

some previous work most related to our system.

p-Fabric[1]: p-Fabric is the most used fabric for the slow scheduling in DCN. The

p-Fabric assume that all the switches of the DCN is one giant switch. The fabric

described in p-Fabric is showed in Figure 2. They will not consider the detailed

transmission among the switches. They only consider the how to get the priority of

each flow in the ingress and how to inqueue and outqueue for each flow. In our work,

when we get the priority of each task, we assume the switches of the DCN is a giant

switch just like the p-Fabric.

Figure 2

Dynamic pricing[2]: In this system, every edge in the datacenter network has a

price. The tasks transmitted through this edge need to pay the price. These prices are

updated every time window. And the price of each edge is determined according to

the performance of the system in the last time window. And they also used the

system welfare to describe the performance of the system.

Paragon[3]: When one task coming, they will analysis the performance of the task to

each server in heterogeneity and interference. And get 2 matrix of performance. This

work is completed in the application classify part. After that, they will integrate the

heterogeneity performance matrix and the interference performance matrix. And

they will choose a best server for each task. This work is completed by server

selection part.

3 Models and Evaluation

There are many observation of flow scheduling, such as shorter flow completing time,

less packet retransmission and lower cost. At first, in order to find the best queuing

method, we aim at cut down the flow completing time. Our queuing method is built

based on the p-Fabric. This means that we considers all the switches of the network

as one giant switch. We came about two queuing methods. The first is called

two-dimensional queuing method. The priority of each task is determined according

to two factor. The two factor is the length of all the flows of a task, and the number

of the flows of a task. The second is called two-counters queuing method. There will

be two counters in the ingress, and each counter is connected to a small switch. At

last, in order to get the performance of our system, we introduce a system welfare.

And we will make the resource allocation aiming at most system welfare.

3.1 Two-dimensional Queuing Model

On the offline step, there are a lot of tasks coming to the ingress of the switch. Every

coming task will report some information of itself. These information include the

source, destination, flow length and the flows’ number.

To get the priority of a task, we will consider two factors. They are the length of all

the flows and the number of the flows. The length of the flows is the first priority

factor. The size of the flows ranges from Smin to Smax. To get the priority more easily,

we divide the range of size into N parts. The 1st part is [Smin , S1], the 2nd part is [S1, S2].

As so on, the following parts are [S2, S3],...[SN, Smax]. The priority of the task whose

size is in the 1st range part is 1. The priority of the task whose size is in the kth part is k.

Then we can get the priority according to the first priority factor. The second priority

is the number of flows. When the size of the flows is in the same part, we will

consider the second priority part. The number of flows is larger, the higher priority it

has. This is because the more flows are in the task, the more likely they may

interleave with each other. [3]We use to task-id to describe the priority of the task.

On the online step, the task- ids will be updated. When a new task comes, we will

use the algorithm came about above to update the task-ids of the remaining tasks in

the ingress and the the new task. This queuing model is showed clearly at the Figure

3.

Figure 3

Evaluation: The code to get the task-id according to the size and the length of the

flows is as flowing.
function [id] = priority(task)

%UNTITLED 此处显示有关此函数的摘要

%优先级队列的产生

% 此处显示详细说明

tasknumber=size(task,1);

maxflownumber=size(task,2);

id=ones(1,tasknumber);

prior=zeros(2,tasknumber);

Task
Arrival

tasksize=sum(task,2);

tasksize=tasksize';

flownumber=zeros(1,tasknumber);

for i=1:tasknumber

for j=1:maxflownumber

if(task(i,j)~=0)

flownumber(i)=flownumber(i)+1;

else

break;

end

end

end

for i=1:tasknumber

if(tasksize(i)<11)

prior(1,i)=1;

else if(tasksize(i)<21)

prior(1,i)=2;

else if(tasksize(i)<31)

prior(1,i)=3;

else if(tasksize(i)<41)

prior(1,i)=4;

else

prior(1,i)=5;

end

end

end

end

end

prior(2,:)=flownumber;

%prior(3,:)=tasksize;

for i=1:tasknumber

for j=1:tasknumber

if j==i

continue;

else

if(prior(1,j)>prior(1,i))

continue;

else if(prior(1,j)<prior(1,i))

id(i)=id(i)+1;

else

if(prior(2,j)<prior(2,i))

continue;

else if(prior(2,j)>prior(2,i))

id(i)=id(i)+1;

else

if(i<j)

continue;

else

id(i)=id(i)+1;

end

end

end

end

end

end

end

end

3.2 Two-counters Queuing Model

In this model, there are 2 counters. One counter is connected one stack. Counter1

produce the priority of 1,3,5... and will drag the tasks whose priority is 1,3,5...to the

stack1. Counter2 produce the priority of 2,4,6... and will drag the tasks whose

priority is 2,4,6...to the stack2. The process to get the priority is online.

At first, we will assign the first coming task of the 1st priority and the second coming

task of the 2nd priority. And drag them respectively to stack1 and stack2. For the

following coming task,we will drag this task to which stack has the smaller size of

flows. And the drag will happen when each task comes. And the tasks of the 2 stacks

will be transmitted simultaneously.

The model is showed as Figure 4.

Figure 4

Evaluation: the flow completed time is the time of which stack complete its tasks

later. The evaluation result is as figure 5 and figure 6.

Figure 5

Figure 6

We will see from the figures above that the flow completed time is positive

correlation to the size.Figure 5 is the size of flows which is linear. Figure 6 is the size

of flows which follows Gaussian distribution.

In the practical scenario, the complexity of the second model is larger. And the first

model consider the number of the flows. This information is not much difficult to get,

but is important. So we are tend to use the 1st queuing model in the future work.

3.3 SystemWelfare

To describe the performance of the system, we introduce the system welfare. This is

a function to of the description of the performance in the terms of the economic. To

get the system welfare function, we need to know the value of each task. And we

also need to know the cost of the system. The cost of the system is related to the

flow completed time of each tasks. The longer the task waits in the queue, the more

cost the system will have. The function of the system welfare is described as

following.

Vi is the value of task i. Xirt is the capacity of the request i in link r during time t. C(X)

is a function related to the waiting time of each task.

4 Future Work

In the future, we will how to get the C(X). This function is related to the flow

completed time of each task. After we get the C(X), instead of queuing according to

the flow completed time, we will use the system welfare to get the priority of each

task.

Reference

[1] pFabric: Minimal Near-Optimal Datacenter Transport

[2] Dynamic Pricing and Traffic Engineering for Timely Inter-Datacenter Transfers

[3] Paragon- QoS-Aware Scheduling for Heterogeneous Datacenters

[4] Towards Practical and Near-Optimal Coflow Scheduling for Data Center

Networks

[5] Fastpass- A Centralized “Zero-Queue” Datacenter Network

[6] Data Center TCP (DCTCP)

[7] Efficient coflow scheduling with varys

[8] Finishing Flows Quickly with Preemptive Scheduling

[9] Network-Aware Scheduling for Data-Parallel Jobs- Plan When You Can

	Flow Scheduling in Datacenter Network
	Lanqing Liu
	May 15,2017
	1 Introduction
	1.1 Background
	1.2 Our Work

	2 Related Work
	3 Models and Evaluation
	3.1 Two-dimensional Queuing Model
	3.2 Two-counters Queuing Model
	3.3 System Welfare

	4 Future Work
	Reference

