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Modeling Information Diffusion in Multi-Sensitive Networks 

Abstract 

Information diffusion has been widely studied in networks, aiming to model the spread of 
information among objects when they are connected with each other. Most of the current research 
assumes the underlying network is working under a diffusion probability which is independent with 
their network structures (e.g. the number of nodes and edges, the transmission time, etc.). 
However, I’m trying to propose a model for information diffusion with time-varying and node-
varying diffusion rate to address the procedure of information diffusion, and provide an interface 
between my proposed model and the well-studied SI model with constant diffusion rate. After that, 
I’m going to find which sensitive type affects the information diffusion procedure most, by 
distinguishing the power in passing information around for different types of sensitiveness. In 
addition, I use real diffusion action logs to learn the parameters in these models, which will benefit 
diffusion prediction in real networks. To distinguishing their diffusion power, machine learning 
algorithms will be used. Now I’ve finished the proof part of learning algorithm, and still working on 
the proof of multi-sensitive model.  

1. Introduction 

I joined Prof. Wang’s lab in this semester. With the help of Dr. Fu, now I’m doing research in 
the Social Network fields. After several weeks’ reading papers, I find myself especially interested in 
the field of information diffusion in online social networks.  

Online Social Networks (OSNs) such as Facebook, Twitter and Weibo have exploded in 
popularity and drawn much attention from the research community. They offer a unique 
information sharing mechanism, which allows users to forward information like news articles, 
public opinions, videos, photos, etc. to their friends, and thus possibly to a wider audience. The 
convenient interaction and personalized feature of this mechanism makes the form of public 
information dissemination undergo a significant structural transformation. Under such 
circumstances, understanding/modeling the dynamics of information diffusion over OSNs has 
become an important research problem. The applications of modeling this process include locating 
the most influential users for commercial purpose, finding the source of malicious information and 
evaluating the social influence of some political and social events, among others. 

In terms of modeling information diffusion over OSNs, most of the existing works have relied 
on Independent Information Cascade and Linear Threshold models. However, almost all of these 
assume time-invariant and node-invariant spreading speed and mainly concern if the statistical 
properties obtained from the model, with parameters appropriately adjusted, would match the 
empirical observation. But in reality, information diffusion on OSNs is usually affected by multiple 
factors, highly time-sensitive and edge-sensitive.  

Considering this phenomenon: two people answer the same question in “Zhihu”. One of them 
has great contribution in his working area, but is almost unknown to the public. Another one also 



make great contributions, but he’s more famous, in other words, he’s an academic star. (Someone 
just like Dr. Li Kaifu!) Now both of them answered this question as best as they can, in other words, 
the “quality” of their answers are in the same level. Intuitively, because the second person is more 
popular, public will think his answer is better than the first one’s answer, more people will like the 
answer submitted by the popular one. Although both of the answers are good, the second one 
receives more likes than the first one. Don’t think I’m just joking! It’s a common phenomenon in 
“Zhihu”. Sometimes the famous answerers (e.g. Zhang Jiawei and Ma Qianzu) answered a question 
totally wrong form the professional perspective, but still received lots of likes. Public sees that you 
have lots of fans, than they think that your answer is right, and vote for it. 

So, that’s what I’m going to find. I think the rate of information diffusion will change with the 
number of edges a transmit node have. If a node has more edges than others, it has more “fans”, 
and gets more popular. Then, information provided by the popular node has a stronger ability to 
propagate than the “unknown” one. Meanwhile, the diffusion rate will attenuate with transmitting 
time growing. To the best of my knowledge, it’s the first work to establish a theoretical framework 
under which the impact of the shape of infection rate with consideration of the infected node’s 
edges on the information diffusion dynamics is discussed. 

There are two major challenges in providing such models. First, how can we model the 
diffusion process in multi-sensitive networks, with heterogeneous diffusion power for each 
sensitive type? Second, for a particular network and a concrete diffusion task, how can we 
automatically determine the best weight for each relation type? In order to solve the first challenge 
on modeling, I extend SI, the well-known diffusion model in single-relational information networks, 
into a variational model for multi-sensitive information networks that combines each sensitive type 
at the sensitiveness level. In other words, the multi-sensitive network is treated as a single-
sensitive network by putting different weights on different types of links, and then apply the single-
sensitive SI model to determine the activation probability. 

In order to determine the weights for the models and therefore make the models applicable 
for diffusion prediction in the real world, I propose to use diffusion action logs to learn the 
parameters in these models. The diffusion action logs record the object set that is activated at each 
timestamp. By maximizing the likelihood of observing the action logs, either obtained from one 
cascade or multiple cascades, we can find the MLE estimators for the parameters using 
optimization methods. With the learned parameters, either the weight of each relation-based 
diffusion model or the weight for relationships of each relation type, we can not only understand 
the role of each relation type in the diffusion process but also predict the diffusion according to 
given initial set of activated objects.  

2. Related Work 

The study of disease propagation in contact networks, which is analogous to the diffusion of 
news and ideas in formation networks, has long been a base for information diffusion study. In [1], 
the authors discussed different thresholds in different disease propagation models including SIV, 
SIS, SIRV and so on. In [2], the paper discussed the co-evolution of content delivery in mobile P2P 
networks under Linear Threshold Model. [3] And [4] proposed models for more than one kind of 
information diffused in social networks and their own strength. In [5], author studied the 
propagation influenced by information overload, which is identified by the length of cascades. In 



[6], the authors performed Hawkes Process to analyze the influence of users’ relationship and 
topics’ relationship in information diffusion. [7], [8] and [9] proposed the complex multi-layer 
network model to study information diffusion more realistically. In [10] and [11], authors studied 
users’ privacy in online social networks. In [12], the prediction of the users in next timestamp is 
studied. [13], [14] and [15] focused on the network structure itself. In [16], an optimization method 
to find the max degree node was under discussion. Authors of [17] discussed the impact in 
information diffusion when a single node’s infectiveness is enhanced. In [18], authors modeled 
information diffusion in time-sensitive conditions. In [19], learning algorithm was applied to find 
the best parameters in multi-relational bibliographic information networks. 

3. Diffusion Models for Multi-Sensitive Networks 

3.1 Overview 

Let G = (N, E) be a connected network with a set of finite nodes N = {1,2, … , n} and a set 
of links E. In this report, I assume that the evolution of the network structure is much slower 
compared with the speed of information spreading, and thus can be neglected. If node j lists node 
i as a friend, then i’s interface allows node j to access the messages that node I posts or forwards, 
as well as other activities associate with i, but not vice versa. Then there is a directed link pointing 
from i to j such that information can flow from i to j, denoted by (i, j) ∈ E. Note that this friend 
relationship is asymmetric. I assume that G has no self-loops and no multiple links between any 
two nodes. 

For a given topic or a piece of message/information in the network, we say a node i is 
infected if i  either initiates this message or forwards this message from its infected 
neighbors/friends; otherwise, it is considered as uninfected. I then model the diffusion of this 
information over G using a processS(t) = (𝑆𝑆1(𝑡𝑡), 𝑆𝑆2(𝑡𝑡), … , 𝑆𝑆𝑛𝑛(𝑡𝑡)) ∈ {0,1}𝑛𝑛, where 𝑆𝑆𝑖𝑖(𝑡𝑡) = 1 if 
i has been infected by time t and 𝑆𝑆𝑖𝑖(𝑡𝑡) = 0 otherwise. Let |S(t)| = ∑ 𝑆𝑆𝑗𝑗(𝑡𝑡)𝑗𝑗∈𝑁𝑁  be the size of the 
infected node set (or simply the number of infected nodes) at time t, and S(0) be the initial set 
of source nodes. To keep the notation simple, we will also use S(t) to represent the set of infected 
notes at time t, i.e., {i ∈ N|𝑆𝑆𝑖𝑖(t)  =  1} whenever no confusion arises. I allow that the diffusion 
starts from a single user (|S(0)|  =  1) or a connected initial component (|S(0)|  >  1). Clearly, all 
the infected nodes remain connected at any time t >  0. Let N�S(t)� = {j ∈ N\S(t) | ∃(i, j) ∈
E, i ∈ S(t)}  be the set of “neighbors” of the infected nodes at time t, and ∂(S(t), j) =
{(i, j) ∈ E | 𝑖𝑖 ∈ 𝑆𝑆(𝑡𝑡), 𝑗𝑗 ∈ 𝑁𝑁(𝑆𝑆(𝑡𝑡))} be the set of edges originating from S(t) to the neighboring 
node j.  

If Si(t)  =  1, then all nodes who list i as a friend are exposed to her message, and are willing 
to forward the message with time-varying rate t ≥ 0 because of the influence of node i. Here, t 
captures people’s changing enthusiasm to forward the message depending on how old the 
message is. For a fresh news/message (small t), a user may be more willing to share it with her 
friends (followers) on her personal page, while she loses her interest in doing so for not-so-fresh 
message (e.g., smaller t for large t). In this setting, at time t, a node j will be infected with rate 
t multiplied by the number of its infected friends. That is, 

𝑝𝑝𝑖𝑖 = 𝛽𝛽 × �𝜕𝜕�𝑠𝑠(𝑡𝑡, 𝑖𝑖)��  (1) 



if j ∈ N(S(t)), and zero otherwise, where ∂(S(t), j) is the number of edges from the set S(t) to 
the neighboring node j. This model can be considered as the well-known Susceptible-Infected (SI) 
model on a graph, but with time-dependent and edge-dependent infection rate. Here, I use SI 
model instead of SIR or SIS since my interest is on the temporal dynamics of S(t) for a given 
message over time t. Thus, I do not take into account message removal from user’s personal page 
or a user being re-infected by the same message. 
 My construction above makes {S(t)}𝑡𝑡≥0 ∈ Ω a time-inhomogeneous discrete-time Markov 
Chain, where Ω = �𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆|Ω|� ⊂ {0,1}𝑛𝑛 consists of 2𝑛𝑛 possible states recording whether or 
not each node is infected. See Figure 1 for illustration. 
 Specifically, if β is a constant, then my model degenerates to the SI model with constant 
infection rate on a finite graph. This time-homogeneous diffusion process has been extensively 
studied in the literature. 

 

Fig. 1. Information diffusion over G: red nodes are infected; green nodes are in N(S(t)); gray nodes are outside 

of S(t) ∪ N(S(t)). Here, 𝑠𝑠′ is a possible follow-up state from s, but 𝑠𝑠′ → 𝑠𝑠′′ is not a possible transition. 

3.2 Model of Time-sensitive information diffusion 

The model of time-sensitive networks has been structured in [18]. According to the paper, 

when let m(t) = ∫ 𝛽𝛽𝛽𝛽𝑠𝑠 𝑡𝑡
0 , Consider the standard process �̃�𝑆(𝑡𝑡) with β = 1, (i.e. m(t) =  t) for all t. 

In particular, for any increasing sequence 0 < 𝑡𝑡1 < 𝑡𝑡2 < ⋯ < 𝑡𝑡𝑟𝑟 , {𝑆𝑆(𝑡𝑡1),𝑆𝑆(𝑡𝑡2), … , 𝑆𝑆(𝑡𝑡𝑟𝑟)}have the 
same joint distribution as {�̆�𝑆�𝑚𝑚(𝑡𝑡1)�, �̃�𝑆�𝑚𝑚(𝑡𝑡2)�, … , �̃�𝑆�𝑚𝑚(𝑡𝑡𝑟𝑟)�}. The shape of t is the key factor in 
determining when and whether a message will reach a set of prescribed nodes. Here, I use 
exponential model of  β so that the diffusion will end in some timestamp t  rather than get 
pandemic: 

𝑝𝑝𝑖𝑖 = 𝛽𝛽 × �𝜕𝜕�𝑠𝑠(𝑡𝑡, 𝑖𝑖)�� = 𝛼𝛼 × 𝑡𝑡𝛾𝛾 × |𝜕𝜕(𝑠𝑠(𝑡𝑡, 𝑖𝑖))|  (2) 

3.3 Model of Edge-sensitive information diffusion 

Firstly, let’s consider in the simplest condition: the network G is homogeneous, each node 
has m edges points to other nodes. Let the type of β be β = α|∂�s(t)�|𝛾𝛾, it means the more 
“friends” (edges) a node has, and the more infectious it will be. 

Notice that, 



�∂�S(t)�� = � |∂(S(t, j))|
𝑗𝑗∈𝑁𝑁(𝑆𝑆(𝑡𝑡))

 

On the discrete time condition, we can get the mathematical expectation of 𝑉𝑉𝑡𝑡, which is the 
set of infected nodes at timestamp t: 

E( 𝑉𝑉𝑡𝑡) = � 𝑝𝑝𝑖𝑖
𝑖𝑖∈𝑁𝑁(𝑡𝑡)

= 𝛼𝛼|𝜕𝜕(𝑠𝑠(𝑡𝑡 − 1))|𝛾𝛾 � |𝜕𝜕�𝑠𝑠(𝑡𝑡 − 1, 𝑖𝑖)�|
𝑖𝑖𝑖𝑖𝑁𝑁(𝑡𝑡)

= 𝛼𝛼|𝜕𝜕�𝑠𝑠(𝑡𝑡 − 1)�|1+𝛾𝛾 

In the homogeneous network, 

E(�∂�s(t − 1)��) = m ×
𝑁𝑁 − |𝑠𝑠(𝑡𝑡 − 1)|

𝑁𝑁 − 1
× |𝑠𝑠(𝑡𝑡 − 1)| 

Where N is the total number of nodes in network G. After applying the Recursive formula, 
s(t) = s(t− 1) + 𝑉𝑉𝑡𝑡 

When given the initial state of  S(0) , we can obtain the mean number of infected nodes at 
timestamp t step by step: 

E( 𝑉𝑉𝑡𝑡) = 𝛼𝛼(m ×
𝑁𝑁 − |𝑠𝑠(𝑡𝑡 − 1)|

𝑁𝑁 − 1
× |𝑠𝑠(𝑡𝑡 − 1)|)1+𝛾𝛾 

 Notice that E(|∂(s(t))|) is a quadratic function, and its quadratic coefficient is below zero. 
So we can predict that, 𝑉𝑉𝑡𝑡 ’s rate of change will firstly become bigger and then reduced. When 
E( 𝑉𝑉𝑡𝑡) is reduced under a small threshold, we can regard it as the transmission procedure is 
stopped. 
 When the network become more realistic, in other words, an inhomogeneous network, the 
mathematical expectation of 𝑉𝑉𝑡𝑡 can also be inferred by checking every node’s status, 

𝑝𝑝𝑖𝑖 = 𝛽𝛽 × �𝜕𝜕�𝑠𝑠(𝑡𝑡, 𝑖𝑖)�� = 𝛼𝛼 × �∑ ∑ 𝛿𝛿(𝑗𝑗, 𝑡𝑡)𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑖𝑖,𝑘𝑘)𝑖𝑖𝑖𝑖𝑅𝑅𝑡𝑡 �𝛾𝛾 × ∑ 𝛿𝛿(𝑗𝑗, 𝑡𝑡)𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑖𝑖,𝑘𝑘)   (3) 

Where 𝑅𝑅𝑡𝑡 means the set of uninfected nodes at timestamp 𝑡𝑡 − 1, 𝛿𝛿(𝑗𝑗, 𝑡𝑡) represents the state of 
node 𝑗𝑗 at time 𝑡𝑡. If 𝑗𝑗 is infected, 𝛿𝛿(𝑗𝑗, 𝑡𝑡) = 1, otherwise 𝛿𝛿(𝑗𝑗, 𝑡𝑡) = 0 and 𝜏𝜏𝑡𝑡(𝑖𝑖,𝑘𝑘) represents the 
neighbor set of object i at timestamp t. 
 Obviously, whether the nodes are infected or not follow the Bernoulli distribution. Then, 

E(𝑉𝑉𝑡𝑡) = � 𝑝𝑝𝑖𝑖
𝑖𝑖𝑖𝑖𝑅𝑅𝑡𝑡

= 𝛼𝛼 × �� � 𝛿𝛿(𝑗𝑗, 𝑡𝑡)
𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑖𝑖,𝑘𝑘)𝑖𝑖𝑖𝑖𝑅𝑅𝑡𝑡

�
𝛾𝛾+1

 

3.4 Model Information Diffusion in Multi-sensitive networks 

 The information is propagated on the mixed set of links from any types of relationships, with 
the weights of different relation types being treated differently, as shown in Figure 2. 

This assumption stipulates that the multi-relational network can be converted to a single-
relational network by aggregating all the edges together, where links from different types carry 
different hyper-level weights. Under this assumption, the activation probability of object i at 
timestamp t + 1 can be defined as: 

𝑝𝑝𝑖𝑖 = ∑ µ𝑘𝑘𝑘𝑘 × (𝛽𝛽𝑖𝑖
(𝑘𝑘) × ∑ 𝛿𝛿(𝑗𝑗, 𝑡𝑡)𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑖𝑖,𝑘𝑘) )   (4) 

Where µ𝑘𝑘 denotes the hyper-level weight for relation type k. 
 Then we can easily get the property of this multi-sensitive model: 

PROPERTY 1: Let 𝑝𝑝𝑖𝑖
(−𝑘𝑘)(𝑡𝑡 + 1) be the infection probability of i at timestamp t + 1 without 



relation type k, under the multi-sensitive model, we have 

·min (𝑝𝑝𝑖𝑖
(𝑘𝑘)(𝑡𝑡 + 1),𝑝𝑝𝑖𝑖

(−𝑘𝑘)(𝑡𝑡 + 1)) ≤ 𝑝𝑝𝑖𝑖(𝑡𝑡 + 1) ≤ max (𝑝𝑝𝑖𝑖
(𝑘𝑘)(𝑡𝑡 + 1),𝑝𝑝𝑖𝑖

(−𝑘𝑘)(𝑡𝑡 + 1)) 

·when µ𝑘𝑘 → 0, 𝑝𝑝𝑖𝑖(𝑡𝑡 + 1) → 𝑝𝑝𝑖𝑖
(−𝑘𝑘)(𝑡𝑡 + 1) 

·when µ𝑘𝑘 → ∞, 𝑝𝑝𝑖𝑖(𝑡𝑡 + 1) → 𝑝𝑝𝑖𝑖
(𝑘𝑘)(𝑡𝑡 + 1) 

 From this property, we can see that under this model when a new relation type is added, it 
might cause a decrease of the activation probability, if the activation probability for this single 
relation type is smaller than the current overall activation probability. 

 

Fig.2. Illustration of the Relation Interdependent Diffusion 

4. Diffusion Model Learning From Action Log 

4.1 The Learning Framework 

 For each diffusion process, or cascade, an action log is a sequence of object set recording 
when an object is activated：A = {𝑉𝑉𝑡𝑡}𝑡𝑡=1𝑇𝑇 . In my setting, t is collected from discrete timestamps. 
The general learning framework is then to find the best parameters, i.e., the weight µ𝑘𝑘 for each 
relation type E , in the diffusion models that can maximize the likelihood of observing these 
actions recorded by the action logs. At a timestamp t, the activation probability 𝑝𝑝𝑢𝑢(𝑡𝑡) of every 
uninfected object u, u ∈ 𝑅𝑅𝑡𝑡 = 𝑉𝑉\∪𝑡𝑡′=1

𝑡𝑡−1 𝑉𝑉𝑡𝑡′ follows the Bernoulli distribution. 
 In other words, at timestamp  t , for any object  u ∈ 𝑅𝑅𝑡𝑡 , it would be infected with 
probability 𝑝𝑝𝑢𝑢(𝑡𝑡), and stay uninfected with probability 1 − 𝑝𝑝𝑢𝑢(𝑡𝑡). Therefore, the probability of 
observing the set of objects 𝑉𝑉𝑡𝑡 infected at time t, and the set of objects 𝑅𝑅𝑡𝑡\𝑉𝑉𝑡𝑡 not infected at 
time t, can be calculated as follows: 

𝑃𝑃(𝑉𝑉𝑡𝑡 ,𝑅𝑅𝑡𝑡\𝑉𝑉𝑡𝑡) = ∏  𝑝𝑝𝑢𝑢(𝑡𝑡)𝑢𝑢∈𝑉𝑉𝑡𝑡 ∏  (1− 𝑝𝑝𝑢𝑢(𝑡𝑡))𝑢𝑢∈𝑅𝑅𝑡𝑡\𝑉𝑉𝑡𝑡   (5) 
The probability of observing the action log of a cascade is then: 

L = �𝑃𝑃(𝑉𝑉𝑡𝑡,𝑅𝑅𝑡𝑡\𝑉𝑉𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

 

If multiple cascades are available, the likelihood is then the product of probabilities of each of 



these cascades: 

L = ∏ ∏ 𝑃𝑃(𝑉𝑉𝑡𝑡(𝑘𝑘),𝑅𝑅𝑡𝑡\𝑉𝑉𝑡𝑡
(𝑘𝑘))𝑇𝑇(𝑘𝑘)

𝑡𝑡=1𝑘𝑘   (6) 
Now I introduce the learning algorithms for the model. The goal is to find the best µ𝑘𝑘  that 

can maximize the likelihood, i.e., the MLE estimators, when plugging 𝑝𝑝𝑢𝑢(𝑡𝑡) into the likelihood 
function. 

4.2 Learning Algorithm 

 By plugging Eq. (4) into the likelihood function Eq. (6), we can get the log-likelihood function 
as: 

log(L) = ��� 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑢𝑢(𝑡𝑡)
𝑢𝑢∈𝑉𝑉𝑡𝑡

+ � log�1− 𝑝𝑝𝑢𝑢(𝑡𝑡)�
𝑢𝑢∈𝑉𝑉𝑡𝑡\𝑅𝑅𝑡𝑡

�
𝑡𝑡

 

= ��� 𝑙𝑙𝑙𝑙𝑙𝑙�𝜇𝜇𝑘𝑘𝛽𝛽𝑢𝑢
(𝑘𝑘)� 𝛿𝛿(𝑗𝑗, 𝑡𝑡)

𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑢𝑢,𝑘𝑘)
𝑘𝑘𝑢𝑢∈𝑉𝑉𝑡𝑡

+ � 𝑙𝑙𝑙𝑙𝑙𝑙 �1 −�𝜇𝜇𝑘𝑘𝛽𝛽𝑢𝑢
(𝑘𝑘)� 𝛿𝛿(𝑗𝑗, 𝑡𝑡)

𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑢𝑢,𝑘𝑘)
𝑘𝑘

�
𝑢𝑢∈𝑉𝑉𝑡𝑡\𝑅𝑅𝑡𝑡

�
𝑡𝑡

 

 I apply coordinate descent method to find the best non-negative k’s that maximizes that log-
likelihood, by setting the learning step 𝜂𝜂 smartly. 
 According to gradient descent method, a local maximum of 𝜇𝜇𝑘𝑘  can be derived by iteratively 
updating the following formula: 

𝜇𝜇𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜇𝜇𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜂𝜂 𝜕𝜕𝑜𝑜𝑜𝑜𝜕𝜕𝜕𝜕
𝜕𝜕𝜇𝜇𝑘𝑘

  (7) 

 Where 𝜕𝜕𝑜𝑜𝑜𝑜𝜕𝜕𝜕𝜕
𝜕𝜕𝜇𝜇𝑘𝑘

 is the first derivative of function log (𝐿𝐿) : 

𝜕𝜕𝑜𝑜𝑜𝑜𝜕𝜕𝜕𝜕
𝜕𝜕𝜇𝜇𝑘𝑘

= ∑ ∑
𝛽𝛽𝑢𝑢

(𝑘𝑘) ∑ 𝛿𝛿(𝑗𝑗,𝑡𝑡)𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑢𝑢,𝑘𝑘)

∑ 𝜇𝜇𝑘𝑘′𝛽𝛽𝑢𝑢
(𝑘𝑘′)∑ 𝛿𝛿(𝑗𝑗,𝑡𝑡)𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑢𝑢,𝑘𝑘′)𝑘𝑘′

𝑢𝑢∈𝑉𝑉𝑡𝑡 − ∑ ∑  
𝛽𝛽𝑢𝑢

(𝑘𝑘)∑ 𝛿𝛿(𝑗𝑗,𝑡𝑡)𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑢𝑢,𝑘𝑘)

1−∑ 𝜇𝜇𝑘𝑘′𝛽𝛽𝑢𝑢
(𝑘𝑘′)∑ 𝛿𝛿(𝑗𝑗,𝑡𝑡)𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑢𝑢,𝑘𝑘′)𝑘𝑘′

𝑢𝑢∈𝑉𝑉𝑡𝑡\𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡   (8) 

 In order to get non-negative updates for 𝜇𝜇𝑘𝑘’s, let 

𝜂𝜂 =
𝜇𝜇𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜

∑ ∑
𝛽𝛽𝑢𝑢

(𝑘𝑘) ∑ 𝛿𝛿(𝑗𝑗, 𝑡𝑡)𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑢𝑢,𝑘𝑘)

1 − ∑ 𝜇𝜇𝑘𝑘′𝛽𝛽𝑢𝑢
(𝑘𝑘′)∑ 𝛿𝛿(𝑗𝑗, 𝑡𝑡)𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑢𝑢,𝑘𝑘′)𝑘𝑘′

𝑢𝑢∈𝑉𝑉𝑡𝑡\𝑅𝑅𝑡𝑡𝑡𝑡

 

 Then we have updating formula: 

𝜇𝜇𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜇𝜇𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜂𝜂 𝜕𝜕𝑜𝑜𝑜𝑜𝜕𝜕𝜕𝜕
𝜕𝜕𝜇𝜇𝑘𝑘

= 𝜇𝜇𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜

⎩
⎨

⎧ ∑ ∑
𝛽𝛽𝑢𝑢

(𝑘𝑘)∑ 𝛿𝛿(𝑗𝑗,𝑡𝑡)𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑢𝑢,𝑘𝑘)

∑ 𝜇𝜇𝑘𝑘′
𝑜𝑜𝑜𝑜𝑜𝑜𝛽𝛽𝑢𝑢

(𝑘𝑘′) ∑ 𝛿𝛿(𝑗𝑗,𝑡𝑡)𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑢𝑢,𝑘𝑘′)𝑘𝑘′
𝑢𝑢∈𝑉𝑉𝑡𝑡𝑡𝑡

∑ ∑
𝛽𝛽𝑢𝑢

(𝑘𝑘)∑ 𝛿𝛿(𝑗𝑗,𝑡𝑡)𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑢𝑢,𝑘𝑘)

1−∑ 𝜇𝜇𝑘𝑘′
𝑜𝑜𝑜𝑜𝑜𝑜𝛽𝛽𝑢𝑢

(𝑘𝑘′) ∑ 𝛿𝛿(𝑗𝑗,𝑡𝑡)𝑗𝑗∈𝜏𝜏𝑡𝑡(𝑢𝑢,𝑘𝑘′)𝑘𝑘′
𝑢𝑢∈𝑉𝑉𝑡𝑡\𝑅𝑅𝑡𝑡𝑡𝑡 ⎭

⎬

⎫
  (9) 

 For the coordinate descent method, we update 𝜇𝜇 on one dimension 𝜇𝜇𝑘𝑘 each time, and then 
update 𝜇𝜇𝑘𝑘+1 using the updated 𝜇𝜇𝑘𝑘, repeat this process cyclically until log(𝐿𝐿) convergences. 

4.3 Action Prediction 

 Once we have learned the parameters �̌�𝜇 in the models, we can utilize these parameters to 
predict the future action of objects given an initial set of active objects. 



 These probabilities can be used to do (1) ranking: who are most likely to be activated at the 
next timestamp, and (2) prediction: predict the total number of activated objects at a future 
timestamp. Note that the total expected number of activated objects at timestamp t can be 
calculated as 𝐸𝐸(∑ 𝑌𝑌𝑢𝑢(𝑡𝑡))𝑢𝑢∈𝑅𝑅𝑡𝑡 , which is equal to ∑ 𝐸𝐸(𝑌𝑌𝑢𝑢(𝑡𝑡))𝑢𝑢∈𝑅𝑅𝑡𝑡 , assuming the independence of the 
activation behavior among inactive objects. For Bernoulli distribution,  𝐸𝐸(𝑌𝑌𝑢𝑢(𝑡𝑡)) = 𝑝𝑝𝑢𝑢(𝑡𝑡), 
therefore 𝐸𝐸(∑ 𝑌𝑌𝑢𝑢(𝑡𝑡))𝑢𝑢∈𝑅𝑅𝑡𝑡 = ∑ 𝑝𝑝𝑢𝑢(𝑡𝑡)𝑢𝑢∈𝑅𝑅𝑡𝑡  

5 Future Work 

In next step, I will try my best to find the theoretical proof of edge-sensitive model. After that, 
I will do experiments using real data from Weibo to find the parameters that fits the time-edge-
sensitive model best. Then, I’ll use learning algorithms to study the weight of these two conditions, 
and trying to find which one plays a greater part in information diffusion. 

6 Conclusion 

 I begin my research with the help of Dr. Fu in the beginning of this semester. In these weeks, 
I explored a whole new area and accumulated lots of useful knowledge. In conclusion, I read some 
papers (which are listed in the References part), I found an area which attracts me best, proposed 
an idea which is never proposed in other authors’ work and trying to prove it. To prove the 
feasibility of a model is a nontrivial task, and I’m trying my best to do it. It’s an unforgettable 
memory to study in Prof. Wang’s lab! 
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